190 likes | 403 Views
A Two Level Monte Carlo Approach To Calculating Expected Value of Sample Information:- How to Value a Research Design. Alan Brennan and Jim Chilcott, Samer Kharroubi, Tony O’Hagan University of Sheffield IHEA June 2003. What are EVPI and EVSI?. Typical Process.
E N D
A Two Level Monte Carlo Approach To Calculating Expected Value of Sample Information:- How to Value a Research Design. Alan Brennan and Jim Chilcott, Samer Kharroubi, Tony O’Hagan University of Sheffield IHEA June 2003
= uncertain model parameters d = set of possible decisions NB(d, ) = net benefit (λ*QALY – Cost) for decision d, parameters i = parameters of interest – possible data collection -i = other parameters (not of interest, remaining uncertainty) Expected net benefit (1) Baseline decision = (2) Perfect Information on i = two expectations Partial EVPI = (2)–(1) (3) Sample Information on i = Partial EVSI = (3)–(1)
Expected Value of Sample Information • 0)Decision model, threshold, priors for uncertain parameters • 1) Simulate data collection: • sample parameter(s) of interest once ~ prior • decide on sample size (ni) (1st level) • sample the simulated data | parameter of interest • 2) combine prior + simulated data --> simulated posterior • 3) now simulate1000 times • parameters of interest ~ simulated posterior • unknown parameters ~ prior uncertainty(2nd level) • 4) calculate best strategy = highest mean net benefit • 5) Loop 1 to 4 say 1,000 times Calculate average net benefits • 6) EVSI parameter set = (5) - (mean net benefit | current information) e.g. 1000 * 1000 simulations
Bayesian Updating: Normal Prior 0= mean, 0= uncertainty in mean (standard deviation) = precision of the prior mean 2pop = patient level uncertainty ( needed for update formula) Simulated Data = sample mean (further data collection e.g. clinical trial ). = sample variance = precision of the sample mean . Simulated Posterior N(1,1 )
Normal Posterior Variance – Implications . • 1 always <0 • If n is very small, 1 = almost 0 • If n is very large, 1 = almost 0
Bayesian Updating: Beta / Binomial • e.g. % responders to a treatment • Prior • % responders ~ Beta (a,b) • Simulated Data • n cases, • y successful responders • Simulated Posterior • % responders ~ Beta (a+y,b+n-y)
Bayesian Updating: Gamma / Poisson • e.g. no. of side effects a patient experiences in a year • Prior • side effects per person • ~ Gamma (a,b) • Simulated Data • n samples, (y1, y2, … yn) • from a Poisson distribution • Simulated Posterior • mean side effects per person ~ Gamma (a+ yi , b+n)
Bayesian Updating without a Formula • WinBUGS • Put in prior distribution • Put in data • MCMC gives posterior (‘000s of iterations) • Use posterior in model • Loop to next data sample • Other approximation methods Conjugate Distributions
Common Properties of EVSI curve • Fixed at zero if no sample is collected • Bounded above by EVPI, monotonic, diminishing returns ? EVSI (n) = EVPI * [1 – exp -a*sqrt(n) ]
Correct 2 level EVPI Algorithm • 0)Decision model, threshold, priors for uncertain parameters • 1) Simulate data collection: • sample parameter(s) of interest once ~ prior • decide on sample size (ni) (1st level) • sample the simulated data | parameter of interest • 2) combine prior + simulated data --> simulated posterior • 3) now simulate1000 times • parameters of interest ~ simulated posterior • unknown parameters ~ prior uncertainty(2nd level) • 4) calculate best strategy = highest mean net benefit • 5) Loop 1 to 4 say 1,000 times Calculate average net benefits • 6) EVPI parameter set = (5) - (mean net benefit | current information) fixed at sampled value e.g. 1000 * 1000 simulations
Shortcut 1 level EVPI Algorithm • 1) Simulate data collection: • sample parameter(s) of interest once ~ prior • decide on sample size (ni) (1st level) • sample the simulated data | parameter of interest • 2) combine prior + simulated data --> simulated posterior • 3) now simulate1000 times • parameters of interest ~ simulated posterior • unknown parameters ~ prior uncertainty(2nd level) • 4) calculate best strategy = highest mean net benefit • 5) Loop 1 to 4 say 1,000 times Calculate average net benefits • 6) EVPI parameter set = (5) - (mean net benefit | current information) 2) fix remaining unknown parameters constant at prior mean value Accurate if .. (a) net benefit functions are linear functions of the -i for all d,i, and (b) i and -i are independent.
How many samples for convergence ? • outer level - over 500 samples, converges to within 1% • inner level - required 10,000 samples, to converge to within 2%.
How wrong is US 1 level EVPI approach for a non-linear model? • E.g – squared every model parameter • Adjusted R2 for simple linear regression = 0.86 Linear Model Non-linear Model
Maximum of Monte Carlo Expectations:- Upward Bias • simple Monte Carlo estimates are unbiased • But, bias occurs when use maximum of Monte Carlo estimates. E{max(X,Y)} > max{E(X),E(Y)}. • E.g. X ~ N(0,1), Y ~ N(0,1) • E{max(X,Y)} = 1.2 , max{E(X),E(Y)} = 1.0 • If variances of X and Y reduces to 0.5, E{max(X,Y)} = 1.08 • E{max(X,Y)} continues to fall variance reduces, but stays > 1.0 • Illustrative model:- 1000*1000 not enough to eliminate bias. • Increasing no. of samples reduces bias, since it reduces the variances of the Monte Carlo estimates.
Computation Issues: Emulators • Gaussian Processes (Jeremy Oakley, CHEBS) • F() ~ NB(d, ) • Bayesian non-linear regression (complicated maths) • Assumes only a smooth functional form to NB(d, ) Benefits • Can emulate complex time consuming models with formula i.e. speed up each sample • Can produce a quick approximation to inner expectation for partial EVPI • Similar quick approximation for partial EVSI but only for one parameter
Summary • 2 level algorithm for EVPI and EVSI is correct approach • Bayesian Updating for Normal, Beta, Gamma OK Others – WinBUGS / approximations • There are issues of computation • Shortcut 1 level EVPI algorithm is accurate if … • net benefit functions are linear and • the parameters are independent. • Emulators (e.g. Gaussian Processes) can be helpful