210 likes | 639 Views
Giftighet av nanosølv for fisk I norske vann og vassdrag. Silver - the most common material used in commercial nano -products. Nanosilver from a washing machine. Concentration in effluent: 2,7 µg/L to 25 µg/L Average: 10,522 µg/L Large variability!. Particles found with TEM:
E N D
Giftighetavnanosølv for fisk I norskevannogvassdrag Eivind Farmen
Silver - the most common material used in commercial nano-products Eivind Farmen
Nanosilver from a washing machine Concentration in effluent: 2,7 µg/L to 25 µg/L Average: 10,522 µg/L Large variability! Particles found with TEM: Size range: 6 – 11 nm • Farkas (2011) Environment international 37 (6), 1057-1062
Objectives • Determineacute and sublethaltoxicityofAgNP to fish & fishcells • DetermineAgNPcharacteristics in variousmatrixes • ComparetoxicpotentialofAgNP to ionicsilver and AuNP • Assess risk to fish under ecologicaly relevant exposure scenarios Eivind Farmen
In vitro experimental model What are the possible effects of nanoparticles on fish cells used as an in vitro test system? Exposure (48h) Primary hepatocytes Liver Gill Cytotoxicity Reactive oxygen species (ROS) production Epithelial integrity Primary gill epithelium cells Eivind Farmen
Particle characteristics by TEM AgNPs AuNPs Roundish to oval particle shape Water cell media In–house synthesized citrate-coated NPs cell media +DOC
Gold NPs Silver NPs ROS production & Cytotoxicity(hepatocytes) ROS Cytotoxicity Farkas et al. 2009. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic toxicol. Eivind Farmen
Effects on primary gill cells Ag is less cytotoxic to gill cells than to hepatocytes AuNPs were not cytotoxic Eivind Farmen
4 nm 220 nm What happens in natural water? Commercial AgNP 1:10 in natural lake water In-house AgNP 1:10 in natural lake water Eivind Farmen
Effects Ag nanoparticles Control 1 g/L AgNP 20 g/L AgNP 100 g/L AgNP 20 g/L Ag+ 100 g/L AgNP2 ? ? Eivind Farmen
GO analysis AgNP 20 µg/L Eivind Farmen
GO analysis Eivind Farmen
Transcriptional UP-regulation (Ag) 100 ug/L AgNP 20 ug/L Ag+ Na/H exchanger9 GTPase IMAP family member 4 20 ug/L AgNP Protein-Glutamine -glutamyltransferase Heme-binding protein 2 Eivind Farmen
Transcriptional Down-regulation (Ag) MHC Class II 100 ug/L AgNP 20 ug/L Ag+ Interferon gamma Carbonicanhydrase 7 Na/K-ATPase 20 ug/L AgNP Eivind Farmen
Mode of action Ag Blood Gill Water Na+ Na+ Na+ NaK- ATPase H+ (NH4+) K+ CO2 K+ Cl- Cl- Cl- HCO3- CO2 CO2 + H2O => H+ + HCO3- Carbonic anhydrase Eivind Farmen
Hazard/risk assessment 100 ug/L AgNP 20 ug/L Ag+ 20 ug/L AgNP Control ToxicityofAgNP due to acting as reservoir for Ag+? ToxicityofAgNPhigher in soft waters ! Eivind Farmen
Effects Ag nanoparticles Control 1 g/L AgNP 20 g/L AgNP 100 g/L AgNP 20 g/L AgNP 100 g/L AgNP2 Osmo-regulation Necrosis/apoptosis Eivind Farmen
Work in progress Eivind Farmen
Differences Ag-NPs Eivind Farmen
Conclusion • High toxicityof Ag-NPs in naturalNorwegian waters • Ag-NP effectmediated by Ag+ ions? • Effectsin gills/osmoregulation • Modulationof immune system • Effect in gills> liver Eivind Farmen
Acknowledgements • Farkas J, MikkelsenHN, EvensenØ, HeierLS, EinsetJ, SalbuB, RosselandBO, OughtonDH, TollefsenKE, Paul Christian, Julián Alberto Gallego-Urrea, Norbert Roos, Martin Hassellöv, Kevin V Thomas, Mie Jareid, Hanne Fossnes, Hans-Christian Teien • Funding: • Norwegian Research Council • Nanotrace Project • NIVA, SIP project 24024 NEWPOLL Thank you for listening! Eivind Farmen