120 likes | 358 Views
Topic-Sensitive PageRank. Taher H. Haveliwala Stanford University Presentation by Na Dai. The frame of system using topic-sensitive PageRank. PageRank. Rank is a n-dimension column vector of PageRank values.(i.e. Rank = (Rank(1), Rank(2),…, Rank(n)) T Motivation: irreducible & aperiodic
E N D
Topic-Sensitive PageRank Taher H. Haveliwala Stanford University Presentation by Na Dai
PageRank • Rank is a n-dimension column vector of PageRank values.(i.e. Rank = (Rank(1), Rank(2),…, Rank(n))T • Motivation: irreducible & aperiodic • Dangling node (Matrix D) • Damp factor α(Matrix E)
Topic-Sensitive PageRank (1) • w (w1, w2,…,w16): a normalized vector with length 1 • wi = Pr(ci|q)
Future Work • Investigate the best basis topics • Topic granularity • Topics that are deeper in hierarchy • vj: resistant to adversarial ODP editors