1 / 29

平方差公式

§15.3.1. 平方差公式. 复习 :. (3x) 2 = ______ (- 4x) 2 = ______. 9x 2. 16x 2. 计算下列多项式的积:. x 2 - 1. (x+1)(x-1) = (m+2)(m-2) = (2x+1)(2x-1) =. m 2 - 4. 4x 2 - 1. a. a. a-b. a. b. b. b. b. a-b. b. (a+b)(a-b). a 2 -b 2. (a+b)(a-b)=a 2 -b 2. 验证 :.

quon-cash
Download Presentation

平方差公式

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §15.3.1 平方差公式

  2. 复习: • (3x)2 = ______ • (- 4x)2 = ______ 9x2 16x2 计算下列多项式的积: x2 - 1 • (x+1)(x-1) = • (m+2)(m-2) = • (2x+1)(2x-1) = m2 - 4 4x2 - 1

  3. a a a-b a b b b b a-b b (a+b)(a-b) a2-b2 (a+b)(a-b)=a2-b2

  4. 验证: (a+b)(a-b) = a2-b2 (a+b)(a-b) = a2-ab+ab-b2 -ab +ab = a2-b2 a2 b2

  5. 平方差公式 (a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积, 等于这两个数的平方差.

  6. a a a-b a b b b b a-b b (a+b)(a-b) a2-b2 (a+b)(a-b)=a2-b2

  7. 这两数的平方差 两个数的和 这两个数的差 (a+b)(a-b)=a2-b2 特征:

  8. 两个二项式相乘 (a+b)(a-b)=a2-b2 特征:

  9. 符号相同 (a+b)(a-b)=a2-b2 特征:

  10. 符号 相反 (a+b)(a-b)=a2-b2 特征:

  11. 平方差 (a+b)(a-b)=a2-b2 特征:

  12. (符号相同的项)2-(符号相反的项)2 (a+b)(a-b)=a2-b2 特征:

  13. (a+b)(a-b)=a2-b2 说明: 公式中的a,b可以表示具体的数(正数或负数),也可以表示一个单项式或一个多项式.

  14. 选择 A • 下列各式中,能用平方差公式运算的是( ) • A.(-a+b)(-a-b) B.(a-b)(b-a) • C.(2a-3b)(3a+2b) D.(a-b+c)(b-a-c) • 2.下列各式相乘,不能用平方差公式计算的是( ) • A.(x-2y)(2y+x) B.(-x+2y)(-x-2y) • C.(-2y-x)(x+2y) D.(-2b-5)(2b-5) C

  15. 例1 运用平方差公式计算: 1、( 3x + 2 )( 3x – 2 ) ; 2、( b + 2a )( 2a – b ); 3、( -x + 2y )( -x - 2y ).

  16. ( ) ( ) + - 分析: ⑴ (3x+2)(3x-2) 3x 2 = 2 3x (3x)2 22 - a a b = a2 - b2 b 用公式关键是识别两数 符号相同的项 a 符号相反的项 b

  17. 解: ⑴ (3x+2)(3x-2) 3x 2 3x 2 - (3x)2 22 = = 9x2 - 4 +2a 2a b -b ⑵ (b+2a)(2a-b); b 2a 2a = (2a+b)(2a-b) b = (2a)2 - b2 = 4a2 – b2 (3) (-x+2y)(-x-2y) = (-x)2-(2y)2 = x2-4y2

  18. 判断 ㄨ 下面各式的计算对不对? 如果不对,应当怎样改正? X2 - 4 (1) (x+2)(x-2) = x2 - 2 ㄨ (2) (-3a-2)(3a-2) = 9a2 - 4 4 - 9a2

  19. (1) (a+3b)(a-3b) = 填空 运用平方差公式计算: a2 - 9b2 (2) (3+2a)(-3+2a) = 4a2 - 9

  20. 小试牛刀 例2 计算: ⑴ 102 ×98; ⑵ (y+2)(y-2)-(y-1)(y+5);

  21. 动 脑筋! 谁是a? 谁是b? ⑴ 102 ×98 102 98 = (100+2) (100-2) = 1002-22 = 10000-4 = 9996

  22. 动 脑筋! ⑵ (y+2)(y-2)-(y-1)(y+5) y 2 y 2 y 1 y 5 - (y2+4y-5) = y2- 22 = y2-4-y2-4y+5 = -4y+1

  23. 位置变化 符号变化 系数变化 指数变化 一拆为二 我能行! (a+b)(a-b)=a2-b2 运用平方差公式计算: p2-q2 1、(p+q)(-q+p) = 2、(-x-y) (x-y) = 3、(2a+b)(2a-b) = 4、(x2+y2)(x2-y2)= 5、 51 × 49 = y2-x2 4a2-b2 x4-y4 2499

  24. 挑战极限 运用平方差公式计算: (2+1)(22+1)(24+1)(28+1) … (22n+1)

  25. 挑战极限 王二小同学在计算(2+1)(22+1)(24+1)时, 将积式乘以(2-1)得: 解:原式 = (2-1)(2+1)(22+1)(24+1) = (22-1)(22+1)(24+1) = (24-1)(24+1) = 28-1

  26. 挑战极限 你能根据上题计算: (2+1)(22+1)(24+1)(28+1) … (22n+1) 的结果吗? 24n-1

  27. 小结 平方差公式 (a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积, 等于这两个数的平方差.

  28. 作业 P 184 1. (3) ﹑(4)、 (5) ﹑(6)

More Related