280 likes | 452 Views
An Introduction to PVS. Judy Crow, Sam Owre , John Rushby , Natarajan Shankar, Mandayam Srivas Computer Science Laboratory, SRI International. Table of Contents. Introduction A brief tour of PVS PVS language More examples References. Introduction .
E N D
An Introduction to PVS Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, MandayamSrivas Computer Science Laboratory, SRI International
Table of Contents • Introduction • A brief tour of PVS • PVS language • More examples • References
Introduction • PVS stands for “Prototype Verification System” • PVS • consists of a specification language integrated with support tools and theorem prover • is both interactive and highly mechanized: the user chooses each proving step and PVS performs it, displays the result, and then waits for the next command • The goal of PVS • PVS is designed to help in the detection of errors as well as in the confirmation of correctness
Table of Contents • Introduction • A brief tour of PVS • PVS language • More examples • References
A brief tour of PVS • PVS has three steps to prove target specifications • Creating a specification • Typechecking • Proving
A brief tour of PVS • Creating a specification • Use M-x new-pvs-file command to create a new PVS file, and type a name of the file • or you can simply load a existing PVS file using M-x find-pvs-file command
A brief tour of PVS • Create a sum.pvs file • specification for summation of the first n natural numbers • sum : THEORY • BEGIN • n : VAR nat • sum (n) : RECURSIVE nat = • (IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF) • MEASURE (LAMBDA n: n) • closed_form: THEOREM sum(n) = (n * (n+1) ) / 2 • END sum used to show that the definition terminates
A brief tour of PVS • Typechecking • M-x typecheck command to typecheck • M-x show-tccs command to see TCCs • M-x typecheck-prove to prove TCCs • TCC • Type Correctness Condition • TCCs must be proved in order to show that the theory is type correct • The proofs of the TCCs may be postponed indefinately
A brief tour of PVS • Typechecking • TCCs • sum takes an argument of type nat, but the type of the argument in the recursive call to sum is integer, since nat is not closed under subtraction • Since sum is recursive form, we need to ensure this function terminates • % Subtype TCC generated (line 7) for n-1 • % unchecked • sum_TCC1 : OBLIGATION (FORALL (n: nat): NOT n=0 IMPLIES n-1 >= 0) • % Termination TCC generated (line 7) for sum • % unchecked • sum_TCC2 : OBLIGATION (FORALL (n: nat): NOT n=0 IMPLIES n-1 < n)
A brief tour of PVS • Proving • Place the cursor on the line containing the theorem, and type M-x prove • A new buffer will pop up, the formula will be displayed, and the cursor will appear at the Rule? prompt, indicating that users can interact with the prover • The proving process is completed if there are no more unproven subgoals
A brief tour of PVS • Proving • Prove formula by induction on n Generate 2 subgoals base case inductive step
A brief tour of PVS • Proving simplifies the formula send the proof to the PVS decision procedure
A brief tour of PVS • Proving • To eliminate the FORALL quantifier • skolem! command • Provide new constants for the bound variables • flatten command • break up the succedent into a new antecedent and consequent antecedent consequent
A brief tour of PVS • Proving
Table of Contents • Introduction • A brief tour of PVS • PVS language • More examples • References
PVS language • A simple example : the rational numbers • predicate subtype • rats : THEORY • BEGIN • rat : TYPE • zero : rat • / : [rat, rat rat] • * : [rat, rat rat] • x, y : VAR rat • left_canclelation : AXIOM x * (y/x) = y • zero_times : AXIOM zero * x = zero • END rats We need to consider divide by zero
PVS language • A simple example : the rational numbers • predicate subtypes • rats : THEORY • BEGIN • rat : TYPE • zero : rat • nonzero : TYPE = { x | x /= zero } • / : [rat, nonzero rat] • * : [rat, rat rat] • x, y : VAR rat • left_canclelation : AXIOM x /= zero IMPLIES x * (y/x) = y • zero_times : AXIOM zero * x = zero • END rats predicate subtype
PVS language • Example : Stacks • Generic type • stacks [t : TYPE] : THEORY • BEGIN • stack : TYPE • empty : stack • s : VAR stack • x : VAR t • push : [t, stack stack] • pop : [stack stack] • top : [stack t] • pop_push : AXIOM pop(push(x, s)) = s • top_push : AXIOM top(push(x, s)) = x • END stacks Generic type
PVS language • Example : factorial • Recursive • The MEASURE function is used to show that the definition terminates, by generating an obligation that the MEASURE decreases with each call • factorial : THEORY • BEGIN • fac(x: nat) : RECURSIVE nat = • IF x = 0 THEN 1 ELSE x * fac(x-1) ENDIF • MEASURE (LAMBDA (x: nat): x) • END factorial
Table of Contents • Introduction • A brief tour of PVS • PVS language • More examples • References
More examples • Quantifier Proof • Original goal : FORALL x : P(x) AND Q(x) (FORALL x : P(x)) AND (FORALL x : Q(x)) • After split command • Subgoal 1 : FORALL x : P(x) AND Q(x) (FORALL x : P(x)) • Subgoal 2 : FORALL x : P(x) AND Q(x) (FORALL x : Q(x)) • predicate : THEORY • BEGIN • T : TYPE • x, y, z : VAR T • P, Q : [T bool] • pred_calc : THEOREM • (FORALL x : P(x) AND Q(x)) • IMPLIES (FORALL x : P(x)) AND (FORALL x : Q(x)) • END predicate
More examples • Decision Procedures • i + 8 can be expressed as 3*m + 5*n • i + 8 + 1 = 3*m’ + 5*n’ • case n=0 • i + 8 + 1 = 3*(m-3) + 5*2 subgoal 2.1 • case n>0 • i + 8 + 1 = 3*(m+2) + 5(n-1) subgoal 2.2 • stamps : THEORY • BEGIN • i, three, five : VAR nat • stamps : THEOREM ( FORALL i : (EXISTS three, five : i+8 = 3 * three + 5 * five )) • END stamps
Table of Contents • Introduction • A brief tour of PVS • PVS language • More examples • References
References • A Tutorial Introduction to PVS by Judy Crow, Sam Owre, John Rushby, Natarajan Shankar and MandayamSrivas, WIFT ‘95