1 / 34

Linear Regression Models

Linear Regression Models. Andy Wang CIS 5930-03 Computer Systems Performance Analysis. Linear Regression Models. What is a (good) model? Estimating model parameters Allocating variation Confidence intervals for regressions Verifying assumptions visually. What Is a (Good) Model?.

Download Presentation

Linear Regression Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linear Regression Models Andy Wang CIS 5930-03 Computer Systems Performance Analysis

  2. Linear Regression Models • What is a (good) model? • Estimating model parameters • Allocating variation • Confidence intervals for regressions • Verifying assumptions visually

  3. What Is a (Good) Model? • For correlated data, model predicts response given an input • Model should be equation that fits data • Standard definition of “fits” is least-squares • Minimize squared error • Keep mean error zero • Minimizes variance of errors

  4. Least-Squared Error • If then error in estimate for xi is • Minimize Sum of Squared Errors (SSE) • Subject to the constraint

  5. Estimating Model Parameters • Best regression parameters are where • Note error in book!

  6. Parameter EstimationExample • Execution time of a script for various loop counts: • = 6.8, = 2.32, xy = 88.7, x2 = 264 • b0 = 2.32  (0.30)(6.8) = 0.28

  7. Graph of Parameter Estimation Example

  8. Allocating Variation • If no regression, best guess of y is • Observed values of y differ from , giving rise to errors (variance) • Regression gives better guess, but there are still errors • We can evaluate quality of regression by allocating sources of errors

  9. The Total Sum of Squares • Without regression, squared error is

  10. The Sum of Squaresfrom Regression • Recall that regression error is • Error without regression is SST • So regression explains SSR = SST - SSE • Regression quality measured by coefficient of determination

  11. Evaluating Coefficientof Determination • Compute • Compute • Compute • where R = R(x,y) = correlation(x,y)

  12. Example of Coefficientof Determination • For previous regression example • y = 11.60, y2 = 29.88, xy = 88.7, • SSE = 29.88-(0.28)(11.60)-(0.30)(88.7) = 0.028 • SST = 29.88-26.9 = 2.97 • SSR = 2.97-.03 = 2.94 • R2 = (2.97-0.03)/2.97 = 0.99

  13. Standard Deviationof Errors • Variance of errors is SSE divided by degrees of freedom • DOF is n2 because we’ve calculated 2 regression parameters from the data • So variance (mean squared error, MSE) is SSE/(n2) • Standard dev. of errors is square root: (minor error in book)

  14. Checking Degreesof Freedom • Degrees of freedom always equate: • SS0 has 1 (computed from ) • SST has n1 (computed from data and , which uses up 1) • SSE has n2 (needs 2 regression parameters) • So

  15. Example ofStandard Deviation of Errors • For regression example, SSE was 0.03, so MSE is 0.03/3 = 0.01 and se = 0.10 • Note high quality of our regression: • R2 = 0.99 • se = 0.10

  16. Confidence Intervals for Regressions • Regression is done from a single population sample (size n) • Different sample might give different results • True model is y = 0 + 1x • Parameters b0 and b1 are really means taken from a population sample

  17. Calculating Intervalsfor Regression Parameters • Standard deviations of parameters: • Confidence intervals arewhere t has n - 2 degrees of freedom • Not divided by sqrt(n)

  18. Example of Regression Confidence Intervals • Recall se = 0.13, n = 5, x2 = 264, = 6.8 • So • Using 90% confidence level, t0.95;3 = 2.353

  19. Regression Confidence Example, cont’d • Thus, b0 interval is • Not significant at 90% • And b1 is • Significant at 90% (and would survive even 99.9% test)

  20. Confidence Intervalsfor Predictions • Previous confidence intervals are for parameters • How certain can we be that the parameters are correct? • Purpose of regression is prediction • How accurate are the predictions? • Regression gives mean of predicted response, based on sample we took

  21. Predicting m Samples • Standard deviation for mean of future sample of m observations at xpis • Note deviation drops as m  • Variance minimal at x = • Use t-quantiles with n–2 DOF for interval

  22. Example of Confidenceof Predictions • Using previous equation, what is predicted time for a single run of 8 loops? • Time = 0.28 + 0.30(8) = 2.68 • Standard deviation of errors se = 0.10 • 90% interval is then

  23. Prediction Confidence

  24. Verifying Assumptions Visually • Regressions are based on assumptions: • Linear relationship between response y and predictor x • Or nonlinear relationship used in fitting • Predictor x nonstochastic and error-free • Model errors statistically independent • With distribution N(0,c) for constant c • If assumptions violated, model misleading or invalid

  25. Testing Linearity • Scatter plot x vs. y to see basic curve type Linear Piecewise Linear Outlier Nonlinear (Power)

  26. TestingIndependence of Errors • Scatter-plot i versus • Should be no visible trend • Example from our curve fit:

  27. More on Testing Independence • May be useful to plot error residuals versus experiment number • In previous example, this gives same plot except for x scaling • No foolproof tests • “Independence” test really disproves particular dependence • Maybe next test will show different dependence

  28. Testing for Normal Errors • Prepare quantile-quantile plot of errors • Example for our regression:

  29. Testing for Constant Standard Deviation • Tongue-twister: homoscedasticity • Return to independence plot • Look for trend in spread • Example:

  30. Linear RegressionCan Be Misleading • Regression throws away some information about the data • To allow more compact summarization • Sometimes vital characteristics are thrown away • Often, looking at data plots can tell you whether you will have a problem

  31. Example ofMisleading Regression I II III IV x y x y x y x y 10 8.04 10 9.14 10 7.46 8 6.58 8 6.95 8 8.14 8 6.77 8 5.76 13 7.58 13 8.74 13 12.74 8 7.71 9 8.81 9 8.77 9 7.11 8 8.84 11 8.33 11 9.26 11 7.81 8 8.47 14 9.96 14 8.10 14 8.84 8 7.04 6 7.24 6 6.13 6 6.08 8 5.25 4 4.26 4 3.10 4 5.39 19 12.50 12 10.84 12 9.13 12 8.15 8 5.56 7 4.82 7 7.26 7 6.42 8 7.91 5 5.68 5 4.74 5 5.73 8 6.89

  32. What Does Regression Tell Us About These Data Sets? • Exactly the same thing for each! • N = 11 • Mean of y = 7.5 • Y = 3 + .5 X • Standard error of regression is 0.118 • All the sums of squares are the same • Correlation coefficient = .82 • R2 = .67

  33. Now Look at the Data Plots I II III IV

  34. White Slide

More Related