1 / 49

Cake Cutting is and is not a Piece of Cake

Cake Cutting is and is not a Piece of Cake. Jeff Edmonds , York University Kirk Pruhs, University of Pittsburgh. Informal Problem Statement. Resource allocation between n possibly deceitful players. I like. I like. 0. 1. Classic Problem Definition. = [0, 1].

Download Presentation

Cake Cutting is and is not a Piece of Cake

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cake Cutting is and is not a Piece of Cake Jeff Edmonds, York University Kirk Pruhs, University of Pittsburgh

  2. Informal Problem Statement Resource allocation between n possibly deceitful players

  3. I like I like 0 1 Classic Problem Definition = [0, 1] • n players wish to divide a cake • Each player p has an unknown value function Vp

  4. v I like x y 0 1 Classic Problem Definition = [0, 1] • n players wish to divide a cake • Each player p has an unknown value function Vp • Allowed Operations : • Eval[p, x, y]: returns how much player p values piece/interval [x, y]

  5. v I like x y 0 1 Classic Problem Definition = [0, 1] • n players wish to divide a cake • Each player p has an unknown value function Vp • Allowed Operations : • Eval[p, x, y]: returns how much player p values piece/interval [x, y] • Cut[p, x, v]: returns a y such Eval[p,x, y] = v

  6. 1/n I like 0 1 Classic Problem Definition = [0, 1] • n players wish to divide a cake • Each player p has an unknown value function Vp • Goal: Fair cut Each honest player p is guaranteed a piece of value at least 1/n.

  7. 1/n I like 0 1 Classic Problem Definition = [0, 1] • n players wish to divide a cake • Each player p has an unknown value function Vp • Goal: Fair cut Each honest player p is guaranteed a piece of value at least 1/n.

  8. History • Originated in 1940’s school of Polish mathematics • Picked up by social scientists interested in fair allocation of resources • Texts by Brams and Taylor, and Robertson and Webb • A quick Google search reveals cake cutting is used as a teaching example in many algorithms courses

  9. I like I like O(n log n) Divide and Conquer Algorithm: Evan and Paz • Yp = cut(p, 0, 1/2) for p = 1 … n My half cut is here. My half cut is here.

  10. I like O(n log n) Divide and Conquer Algorithm: Evan and Paz • Yp = cut(p, 0, 1/2) for p = 1 … n My half cut is here.

  11. O(n log n) Divide and Conquer Algorithm: Evan and Paz • Yp = cut(p, 0, 1/2) for p = 1 … n • m = median(y1, … , yn)

  12. I like I like so am happy with the left. so am happy with the right. O(n log n) Divide and Conquer Algorithm: Evan and Paz • Yp = cut(p, 0, 1/2) for p = 1 … n • m = median(y1, … , yn) • Recurse on [0, m] with those n/2 players p for which yp < m • Recurse on [m, 1] with those n/2 players p for which yp > m • Time O(nlogn)

  13. Problem Variations • Contiguousness: Assigned pieces must be subintervals • Approximate fairness: A protocol is c-fair if each player is a assured a piece that he gives a value of at least c/n • Approximate queries (introduced by us?): • AEval[p, ε, x, y]: returns a value v such that Vp[x, y]/(1+ε) ≤ v ≤ (1+ ε) Vp[x, y] • ACut[p, ε, x, v]: returns a y such Vp[x, y]/(1+ε) ≤ v ≤ (1+ ε) Vp[x, y]

  14. Problem Variations (Approximate) * Submitted to STOC

  15. Outline • Deterministic Ω(n log n) Lower Bound • Randomized with Approximate Cuts Ω(n log n) Lower Bound • Randomized with Exact Cuts O(n) Upper Bound

  16. At least n/2 players require thin rich piece Thin-Rich Game • Game Definition: Single player must find a thin rich piece. • A piece is thin if it has width ≤ 2/n • A piece is rich if it has value ≥ 1/2n • Theorem: The deterministic complexity of Thin-Rich is Ω(log n). • Theorem: The deterministic complexity of cake cutting is Ω(nlog n).

  17. Alg Adv • I give sequence of Eval[x,y] & Cut[x,v]operations. • I dynamically choose how to answer

  18. Alg Adv • I can choose any non-continuous thin piece, • but W.L.G.I choose one of these. • I cut the cake in to n thin pieces.

  19. Alg Adv ... ... ... ... ... ... • I build a complete 3-ary treewith the n pieces as leaves

  20. Alg Adv ½ ¼ ½ ¼ ¼ ¼ ... ... ... ... ... ... • For each node, • I label edges • <½,¼,¼> or <¼,¼,½>

  21. Alg Adv ½ ¼ ½ ¼ ¼ ¼ ¼ ¼ ½ ... ... ¼ ¼ ... ... ... ½ ... 1/1024 = ¼×¼×½×¼×¼×½ • Value of each piece isproduct of edge labelsin path.

  22. Alg Adv ½ ¼ ½ ¼ ¼ ½ ¼ ¼ ½ ... ... ¼ ¼ ... ... ... ½ ... 1/256 = ½×¼×½×¼×¼×½ To get a rich pieceI need at least 40% of the edge labels in path be ½. Good luck

  23. Alg Adv 0.4398 0 y • I need to find a yso that V[0,y] = 0.4398. • Cut[0,0.4398]?

  24. Alg Adv 1/2 0 1 0.4398 0.4398 • I do binary search to find0.4398 • Cut[0,0.4398]? 1/4

  25. Alg Adv ¼ ½ ¼ 1/4 2/4 0.4398 • I do binary search to find0.4398 • I fix some edge labels • Cut[0,0.4398]?

  26. Alg Adv ¼ ½ ¼ 0.4398 0.4398 • I do binary search to find0.4398 • I fix some edge labels • Cut[0,0.4398]? 1/4 2/4 6/16 7/16 4/16 8/16

  27. Alg Adv ¼ ½ ½ ¼ ¼ ¼ 7/16 8/16 0.4398 • I fix some edge labels • Cut[0,0.4398]?

  28. Alg Adv ¼ ¼ ¼ ½ ½ ½ ½ ½ ¼ ¼ ¼ ¼ ¼ ¼ ¼ 0.4398 y ¼ ¼ ½ • I find a yso that V[0,y] = 0.4398. • Cut[0,0.4398]?

  29. Alg Adv ¼ ¼ ¼ ½ ½ ½ ½ ½ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ½ • I learned a path,but all its labels are ¼ • Hee Hee

  30. Alg Adv ¼ ¼ ¼ ½ ½ ½ ½ ½ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ½ • YesAfter t operationsevery path has only t known ½ labels. • Every path has  oneknown ½ label.

  31. Alg Adv ¼ ¼ ¼ ½ ½ ½ ½ ½ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ½ y x • I fix labels in path to x & y to ¼. • and give • Eval[x,y] = 0.00928 • Eval[x,y] 0.00928

  32. Alg Adv ¼ ¼ ¼ ½ ½ ½ ½ ½ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ½ ¼ ¼ ¼ ¼ ½ • YesAfter t operationsevery path has only t½ known labels.

  33. Deterministic Ω(log n) Lower Bound • Theorem: To win at Thin-Rich, the alg has to get a rich piece with at least 40% of the edge labels in path be ½. • Theorem: After t operations, every path has only  t ½ labels. • Theorem: The deterministic complexity of Thin-Rich is Ω(depth) =Ω(log n)

  34. At least n/2 players require thin rich piece Deterministic Ω(nlog n) Lower Bound • Theorem: The deterministic complexity of Thin-Rich is Ω(log n). • Theorem: The deterministic complexity of cake cutting is Ω(n log n).

  35. Outline Done • Deterministic Ω(n log n) Lower Bound • Randomized with Approximate Cuts Ω(n log n) Lower Bound • Randomized with Exact Cuts O(n) Upper Bound Randomized Approximate Cuts

  36. Adv • I must choose the value functions • without knowing • coin flips • I define a randomized algorithm Rand Alg

  37. Adv Yau Alg RandAdv • I must choose the value functions • without knowing • coin flips • I define a randomized algorithm Rand Alg • I flip coins to choose value function. • I dynamically choose error in answers • I deterministically give sequence of Eval[x,y] & Cut[x,v]operations.

  38. Alg AdvRand ½ ¼ ¼ ¼ ½ ¼ ¼ ½ ¼ ... ... ... ... ... ... • For each node, • I randomly label edges • <½,¼,¼>, <¼,½,¼>, or <¼,¼,½>

  39. Alg Adv ¼ ½ ¼ ¼ ¼ ½ ¼ ½ ¼ ¼ ½ ½ ¼ ¼ ¼ ½ ¼ ¼ y x • Consider path to x and y. • Flip coins for labels. • 33% of labels will be ½. • Eval[x,y] • But I need 40%!

  40. Alg Adv ¼ ¼ ½ ¼ ¼ ½ ¼ ½ ¼ ¼ ½ ½ ¼ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½ ¼ ½ ¼ ¼ y x • I flip coins for path to x’and get 33% ½. • Cut[x’,0.4398]? x’

  41. Alg Adv ¼ ¼ ½ ¼ ¼ ½ ¼ ½ ¼ ¼ ½ ¼ ½ ¼ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ¼ ½ ¼ ½ ¼ ¼ y x • I do binary search for 0.4398, • but for some odd reasonit finds 40%½ labels. • Cut[x’,0.4398]? ½ ½ ½ x’

  42. Alg Adv ¼ ¼ ½ ¼ ¼ ½ ½ ¼ ½ ¼ ½ ¼ ½ ¼ ½ ¼ ¼ ½ ½ ¼ ½ ¼ ¼ ¼ ¼ ¼ ½ ¼ ½ ¼ ¼ y x • Luckily I can give  error and this hides most of the labels. • Cut[x’,0.4398]? x’

  43. Outline Done • Deterministic Ω(n log n) Lower Bound • Randomized with Approximate Cuts Ω(n log n) Lower Bound • Randomized with Exact Cuts O(n) Upper Bound Done Randomized Exact Cuts O(n) Upper

  44. O(1) Complexity Randomized Protocol for Thin-Rich Protocol Description: • “Cuts” cake into n “candidate” pieces of value 1/n • Randomly chooses one. • It is likely thin and rich.

  45. Randomized Protocol for Cake Cutting Protocol Description: • Each player randomly selects 2d candidate pieces. • For each player, we carefully pick one of these

  46. Randomized Protocol for Cake Cutting Protocol Description: • Each player randomly selects O(1) candidate pieces. • For each player, we carefully pick one of these • so that every point of cake is covered by at most O(1) pieces. • Where there is overlap, recurs. Works with O(1) probability.

  47. Balls and Bins Two Random Choices: n balls, n bins each ball randomly chooses two bins. Choice: Select one of two bins for each ball. Whp no bin has more than O(1) balls.

  48. Balls and Bins Two Random Choices: n balls, n bins each ball randomly chooses two bins. Choice: Select one of two bins for each ball. Whp no bin has more than O(1) balls.

  49. A piece of cake. Outline Done • Deterministic Ω(n log n) Lower Bound • Randomized with Approximate Cuts Ω(n log n) Lower Bound • Randomized with Exact Cuts O(n) Upper Bound Done More at STOC

More Related