1 / 12

cili[ ar)sin[ ai[LK)a[

cili[ ar)sin[ ai[LK)a[. ki[epN pdiY< pr pkiSni k)rNi[ pDvin) GTni Yiy Ryir[. Si[Piv&>. privt<n ( piC& f[>kiv&> )** pdiY< d[Kivi[ ar)si. pRyiv<n ( vk)Bvn ) l[ºs. 5. q i. q f. privt<n. aipit ki[N = privt<n ki[N q i = q r {l>b an[ pkiSni (krNi[Y) rciti[ ki[N}. 8. pdiY<n&> AYin.

rae
Download Presentation

cili[ ar)sin[ ai[LK)a[

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. cili[ ar)sin[ ai[LK)a[

  2. ki[epN pdiY< pr p\kiSni k)rNi[ pDvin) GTni Yiy Ryir[ • Si[Piv&> • privt<n(piC& f[>kiv&>)** • pdiY< d[Kivi[ • ar)si • p\Ryiv<n(vk\)Bvn) • l[ºs 5

  3. qi qf privt<n aipit ki[N = privt<n ki[N qi = qr {l>b an[ p\kiSni (krNi[Y) rciti[ ki[N} 8

  4. pdiY<n&> AYin • s&y<mi>Y) n)kLti (krNi[ pZ¸v) pr rh[li pdiYi[< pr Y) priv(t<t Yen[ bF) d)Simi> f[liy C[. - am&k priv(t<t (krNi[Y) ai>K a>jie jiy C[. aipN[ privt)<t Yy[l (krNi[n) mddY) pdiY<n&> AYin jiN) Sk)a[ C)a[. • dr[k pdiY<ni[ j&di[ j&di[ r>g d[Kivin& kirN pr)vt<n Yti ph[li t[mi> Si[Pie jti (krNi[n[ aiBir) C[. 10

  5. qr qi smtl ar)si[ • tm[ t[ j j&ai[ Ci[ j[ tmir) ai>K s&F) phi[>c[ C[. - priv(t<t (krNi[ni l)F[ aipN[ pdiY<n&> AYin jiN) Sk)a[ C[. smtl ar)si[ d)vidi>D)n) Ti[c prY) aivti (krNi[ aipNn[ ar)sin) piCLY) pN t[j j³yia[Y) aivti hi[vini[ aiBis Yiy C[. p\(tb)>b pdiY< 12

  6. qr qi d smtl ar)si[ {1} si] p\Ym ar)sin[ kiTK&N[ l>b di[ri[ 0 = qi = qr {2} d)vidi>D) mi>Y) n)kLt&> an[ ar)sin) spiT) pr l>b siY[ K&Ni[ rct&> aipit k)rN di[ri[qi = qr {3} hv[ ai privt)<t (krNi[n[ piCLn) trf l>bivti ar)sin) piCl a[k (b>d&a[ B[gi YS[. Jyi> d)vidi>D)n&> aiBis) p\(t(b>b rciS[. udihrN p\kiSni (krNi[ hk)ktmi> Ryi>Y) udBvti nY) miT[ t[n[ “aiBis) p\(tb)>b” kh[ C[. aiBis :- ah)Y) ki[e p\kiS jti[ k[ udBvti[ nY) demo d 16

  7. 2 3 1 b[ ar)sin) mddY) g&Nk privt<n kiTK&N[ gi[qv[li b>ºn[ ar)simi>Y) p]sini k[Tli p\(t(b>b tmn[ d[Kiy C[.{viAt(vk p]sin[ bikiti riKti} udihrN • 1 • 2 • 3 • 4 • 5 29

  8. a>tgi[<L kic aipit (krN R vk\ti (#ijyi • C R aipit k)rN bh)gi[<L kic R vk\ti (#ijyi • C vk\ ar)si gi[Likir ar)si[: kip m&k[li[ gi[Likir ar)si[ C = vk\ti k[ºW a>tgi[<L ar)sin) sim[, bh)gi[<L ar)sin) piCL 32

  9. m&²y k[ºW f=R/2 a>tgi[L ar)si[ R vk\ti (#ijyi aipit ki[N = privt<n ki[N. aim (krNi[ vk\ti (#ijyi trf privt)<t Yiy C[. m&²y axn[ smi>tr aipit Yti p\kiSni (krNi[ privt)<t Yen[ (b>d& Av$p[ mL[ C[ j[n[ ar)sin&> m&²y k[ºW kh[ C[. m&²y k[ºWY) ar)sin) privt<k spiT)ni m¹y(b>d& s&F)ni a>trn[ k[ºWl>bie kh[ C[. 35

  10. a(³n p\gTivvi miT[ kyi p\kirni[ ar)si[ upyi[gmi> leS&>? a>tgi[L j[ kigLn[ sLgivvi[ hi[y t[n[ ar)siY) k[Tli a>tr[ m&kSi[? k[ºWl>bie j[Tli a>tr[

  11. F F a>tgi[L ar)si[ vk\ti (#ijyi • ar)si pr aipit Yti ph[li k[ºW(b>d& mi>Y) psir Yti (krNi[ vk\ti #i)jyin[ smi>tr privt)<t Yiy C[. • ar)si pr vk\ti #i)jyin[ smi>tr aipit Yti (krNi[ privt)<t Yen[ k[ºW(b>d&mi> mL[ C[. 40

  12. bh)gi[<L ar)si[ R vk\ti (#ijyi k[ºWb)>d& f=-R/2 • priv(t<t (krNi[ vk\ti (#ijyiY) d&rn) trf f[>kiy C[. • vk\ti #i)jyin[ smi>tr (krNi[ privt)<t Yyi bid t[ priv(t<t (krNi[ k[ºW(b>d& prY) ud\Bv Yti hi[y t[vi[ aiBis Yiy C[. • m&²yk[ºW {F} Y) ar)sini m¹y(b>d& s&F) ni a>trn[ k[ºWl>bie {f} kh[ C[. 45

More Related