1 / 29

Strong EWSB in Top Quark Production

Praha, Nov 3, 2005. Strong EWSB in Top Quark Production. Ivan Melo. M. Gintner, I. Melo, B. Trpi š ov á (University of Ž ilina). Outline. Motivation for new vector ( ρ ) resonances: Strong EW Symmetry Breaking (SEWSB) Vector resonance model

rae
Download Presentation

Strong EWSB in Top Quark Production

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Praha, Nov 3, 2005 Strong EWSB in Top Quark Production Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina)

  2. Outline • Motivation for new vector (ρ) resonances: Strong EW Symmetry Breaking (SEWSB) • Vector resonance model • ρ signal at LHCpp → ρtt→ WWtt + X ρtt → tttt + X • ρ signal at future e+e- colliders e+e- → ννtt e+e- → tt

  3. EWSB: SU(2)L x U(1)Y→ U(1)Q Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor

  4. Chiral SB in QCD SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV

  5. WL WL→ WL WLWLWL → t tt t → t t t t t π = WL L = i gπMρ/v (π- ∂μπ+ - π+ ∂μπ-)ρ0μ + gt t γμ t ρ0μ+ gt t γμ γ5 t ρ0μ

  6. International Linear Collider: e+e- at 1 TeV ee ―› ρtt ―›WW tt ee ―› ρtt ―›tt tt ee ―› WW ee ―› tt ee ―› ννWW ee ―›ννtt Large Hadron Collider: pp at 14 TeV pp ―› ρtt ―›WW tt pp ―› ρtt ―›tt tt pp ―› WW pp ―› tt pp ―› jj WW pp ―› jj tt

  7. Chiral effective Lagrangian SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin + Lnon.lin. σ model -a v2 /4 Tr[(ωμ + i gvρμ . τ/2 )2] + Lmass+ LSM(W,Z) +b1ψL i γμ (u+∂μ – u+ρμ+ u+ i g’/6 Yμ) u ψL + b2ψRPb i γμ (u ∂μ – u ρμ+ u i g’/6 Yμ) u+PbψR + λ1ψL i γμ u+ Aμγ5 u ψL +λ2ψR Pλ i γμ u Aμγ5 u+PλψR BESS Our model Standard Model with Higgs replaced with ρ gπ= Mρ /(2 v gv) gt=gv b2/4+ … Mρ≈ √a v gv/2 t

  8. Low energy constraints Unitarity constraints WLWL → WLWL , WLWL → t t,t t → t t gv≥ 10 → gπ ≤ 0.2 Mρ(TeV) |b2 – λ2| ≤ 0.04 → gt≈ gv b2 / 4 |b1 – λ1| ≤ 0.01 → b1 = 0 gπ ≤ 1.75 (Mρ= 700 GeV) gt ≤ 1.7 (Mρ= 700 GeV)

  9. Partial (Γ―›WW) andtotal width Γtot of ρ

  10. Search at LHC: pp → W W t t + X J. Leveque et al. ATL-PHYS-2002-019: pp -> Htt -> WWtt MH =[120-240] GeV ρ • BRA: pp → ρtt→WWtt • σ(WWtt) = σ(ρtt) x BR(ρ->WW) • 2) Full calculation: pp → WWtt

  11. pp → W W t t + X (full calculation) 39 diagrams in gg channel No resonance background ρ ρ ρ

  12. CompHEP results: pp → W W t t + X ρ: Mρ=700 GeV, Γρ=4 GeV, b2=0.08, gv=10 SM: MH = 700 GeV ΓH = 184 GeV MWW(GeV) MWW(GeV) σ(gg) = 10.2 fb ―› 1.0 fb σ(gg) = 11.3 fb ―› 0.20 fb No resonance background: σ(gg) = 0.037 fb Cuts: 700-3Γρ < mWW < 700 +3Γρ (GeV) pT > 100 GeV, |y| < 2

  13. Total cross sections for ρtt and WWtt BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)

  14. |N(ρ) – N(no res.)| √(N(no res.)) R = ≈ S/√B > 5 BRA Full calc.

  15. Search at LHC: tttt vs WWtt BRA BRA

  16. Search at Hadron Colliders: p+p(p) ―› t + t Tevatron: p + p ―› t + t σS= 1.2 fb σB = 8 306 fb LHC: p + p ―› t + t σS = 22.7 fb σB = 752 000 fb Mρ=700 GeV Γρ=12.5 GeV No cuts

  17. Subset of fusion diagrams + approximations (Pythia) Full calculation of 66 diagrams at tree level (CompHEP)

  18. Pythia vs CompHEP ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b2 = 0.08) Before cuts √s (GeV) 800 1000 1500 Pythia (fb) 0.35 0.95 3.27 CompHEP (fb) 0.66 1.16 3.33

  19. Backgrounds (Pythia) e+e- → tt γ e+e- → e+e- tt σ(0.8 TeV) = 300.3 + 1.3 fb → 0.13 fb(0.20 fb) σ(1.0 TeV) = 204.9 + 2.4 fb → 0.035 fb (0.16 fb)

  20. e- e+→ t t ρ different from Higgs ! x+y=560 nm z=0.40 mm n=2x1010 ρ (M= 700 GeV, b2=0.08, g’’=20)

  21. Conclusions • New strong ρ-resonance model • pp → W W t t + Xpp → t t t t + X at LHC • R values up to a few 100 (before t,W decays and detector effects), L = 100 fb-1 • Backgrounds pp → tt, W + jets, Z + jets, … ? • e+e- → ννtt R ≤ 26 at CM energy = 1 TeV, L = 200 fb-1 e+e- → tt Lscan = 1 fb-1 Similar work on pp → t t t t + X : T.Han et al, hep-ph/0405055

  22. WWtt reconstruction • WWtt →lν jj jjb jjb • b tagging …… 50 % • l detection …. 90 % • one trigger lepton pT > 30 (20) GeV e (μ) • jets pT > 30 GeV • kinematical cuts for 6 jets …….. ≈ 20 % • BR: W → e(μ)ν ….. 21.3 % … Pl W → hadrons …68 % …. Ph ε = εcutsεb2εl 4 Pl Ph = 1.2 %

  23. Search at Hadron Colliders Mρ=700 GeV, Γρ=12.5 GeV Tevatron: p + p ―› t + t σS= 1.2 fb σB = 8 306 fb LHC: p + p ―› t + t σS = 22.7 fb σB = 752 000 fb

  24. pp → ρt t + X(8 diagrams in gg channel) BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)

More Related