1 / 60

CHAPTER 8 Risk and Rates of Return

CHAPTER 8 Risk and Rates of Return. This chapter is relatively important. Investment returns. The rate of return on an investment can be calculated as follows: (Amount received – Amount invested) Return = ________________________ Amount invested

raguirre
Download Presentation

CHAPTER 8 Risk and Rates of Return

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAPTER 8Risk and Rates of Return • This chapter is relatively important.

  2. Investment returns The rate of return on an investment can be calculated as follows: (Amount received – Amount invested) Return =________________________ Amount invested For example, if $1,000 is invested and $1,100 is returned after one year, the rate of return for this investment is: ($1,100 - $1,000) / $1,000 = 10%.

  3. What is investment risk? • Investment risk is related to the probability of earning a low or negative actual return. • The greater the chance of lower than expected or negative returns, the riskier the investment. • The greater the range of possible events that can occur, the greater the risk • The Chinese definition • Two types of investment risk • Stand-alone risk (when the return is analyzed in isolation.) • Portfolio risk (when the return is analyzed in a portfolio.)

  4. PART I: Standard alone risk • The risk an investor would face if s/he held only one asset.

  5. Investor attitude towards risk • Risk aversion – assumes investors dislike risk and require higher rates of return to encourage them to hold riskier securities. • Who wants to be a millionaire? • Risk premium – the difference between the return on a risky asset and less risky asset, which serves as compensation for investors to hold riskier securities.

  6. Selected Realized Returns, 1926 – 2001 Average Standard ReturnDeviation Small-company stocks 17.3% 33.2% Large-company stocks 12.7 20.2 L-T corporate bonds 6.1 8.6 L-T government bonds 5.7 9.4 U.S. Treasury bills 3.9 3.2 Source: Based on Stocks, Bonds, Bills, and Inflation: (Valuation Edition) 2002 Yearbook (Chicago: Ibbotson Associates, 2002), 28.

  7. The Value of an Investment of $1 in 1926 6402 2587 64.1 48.9 16.6 Index 1 Year End Source: Ibbotson Associates

  8. Rates of Return 1926-2000 Percentage Return Year Source: Ibbotson Associates

  9. Suppose there are 5 possible outcomes over the investment horizon for the following securities:

  10. Why is the T-bill return independent of the economy? • T-bills will return the promised 5.5%, regardless of the economy. • T-bills are risk-free in the default sense of the word.

  11. How do the returns of HT and Coll. behave in relation to the market? • HT – Moves with the economy, and has a positive correlation. This is typical. • Coll. – Is countercyclical with the economy, and has a negative correlation. This is unusual.

  12. Calculating the expected return

  13. Summary of expected returns Expected return HT 12.4% Market 10.5% USR 9.8% T-bill 5.5% Coll. 1.0% HT has the highest expected return, and appears to be the best investment alternative, but is it really? Have we failed to account for risk?

  14. Risk: Calculating standard deviation

  15. Standard deviation for each investment

  16. Comments on standard deviation as a measure of risk • Standard deviation (σi) measures “total”, or stand-alone, risk. • The larger σi is, the lower the probability that actual returns will be closer to expected returns. • Larger σi is associated with a wider probability distribution of returns.

  17. Comparing risk and return ^ * Seem out of place.

  18. PART II: Risk in a portfolio context • Portfolio risk is more important because in reality no one holds just one single asset. • The risk & return of an individual security should be analyzed in terms of how this asset contributes the risk and return of the whole portfolio being held.

  19. In a portfolio… • The expected return is the weighted average of each individual stock’s expected return. • However, the portfolio standard deviation is generally lower than the weighted average of each individual stock’s standard deviation.

  20. Portfolio construction:Risk and return • Assume a two-stock portfolio is created with $50,000 invested equally in both HT and Collections. That is, you invest 50% in each. What are the expected returns and standard deviation for the portfolio? • A portfolio’s expected return is a weighted average of the returns of the portfolio’s component assets. • Standard deviation is a little more tricky and requires that a new probability distribution for the portfolio returns be devised.

  21. Calculating portfolio expected return

  22. An alternative method for determining portfolio expected return

  23. Calculating portfolio standard deviation

  24. Earlier info for the two stocks:

  25. Comments on portfolio risk measures • σp = 3.4% is much lower than the σi of either stock (σHT = 20.0%; σColl. = 13.2%). This is not generally true. • σp = 3.4% is lower than the weighted average of HT and Coll.’s σ (16.6%). This is usually true (so long as the two stocks’ returns are not perfectly positively correlated). • Perfect correlation means the returns of two stocks will move exactly in same rhythm. • Portfolio provides average return of component stocks, but lower than average risk!

  26. General comments about risk • Most stocks are positively (though not perfectly) correlated with the market. • σ 35% for an average stock. • Combining stocks in a portfolio generally lowers risk.

  27. Stock W Stock M Portfolio WM 25 15 0 0 0 -10 -10 Returns distribution for two perfectly negatively correlated stocks 25 25 15 15 -10

  28. Stock M’ Portfolio MM’ Stock M 25 25 25 15 15 15 0 0 0 -10 -10 -10 Returns distribution for two perfectly positively correlated stocks

  29. Returns • A stock’s realized return is often different from its expected return. • Total return= expected return + unexpected return • Unexpected return=systematic portion + unsystematic portion • Total risk (stand-alone risk)= systematic portion of risk + unsystematic portion of risk

  30. Systematic Risk • The systematic portion will be affected by factors such as changes in GDP, inflation, interest rates, etc. • This portion is not diversifiable because the factor will affect all stocks in the market. • Such risk factors affect a large number of stocks. Also called Market risk, non-diversifiable risk, beta risk.

  31. Unsystematic Risk • This unsystematic portion is affected by factors such as labor strikes, part shortages, etc, that will only affect a specific firm, or a small number of firms. • Also called diversifiable risk, firm specific risk.

  32. Diversification • Portfolio diversification is the investment in several different classes or sectors of stocks. • Diversification is not just holding a lot of stocks. • For example, if you hold 50 internet stocks, you are not well diversified.

  33. Creating a portfolio:Beginning with one stock and adding randomly selected stocks to portfolio • σp decreases as stocks added, because stocks usually would not be perfectly correlated with the existing portfolio. • Expected return of the portfolio would remain relatively constant. • Diversification can substantially reduce the variability of returns with out an equivalent reduction in expected returns. • Eventually the diversification benefits of adding more stocks dissipates after about 10 stocks, and for large stock portfolios, σp tends to converge to  20%.

  34. sp (%) Company-Specific Risk 35 Stand-Alone Risk, sp 20 0 Market Risk 10 20 30 40 2,000+ # Stocks in Portfolio Illustrating diversification effects of a stock portfolio

  35. Breaking down sources of total risk (stand-alone risk) Stand-alone risk = Market risk + Firm-specific risk • Market risk (systematic risk, non-diversifiable risk) – portion of a security’s stand-alone risk that cannot be eliminated through diversification. • Firm-specific risk (unsystematic risk, diversifiable risk) – portion of a security’s stand-alone risk that can be eliminated through proper diversification. • If a portfolio is well diversified, unsystematic is very small.

  36. Failure to diversify • If an investor chooses to hold just one stock in her/his portfolio (thus exposed to more risk than a diversified investor), should the investor be compensated for the firm-specific risk (earn higher returns)? • No. • An analogy, food diversification • Firm-specific risk is not important to a well-diversified investor, who only cares about the systematic risk.

  37. So, • Rational, risk-averse investors are concerned with σp, which is based upon market risk. • No compensation should be earned for holding unnecessary, diversifiable risk. • Only systematic risk will be compensated.

  38. How do we measure systematic risk?Beta • Measures a stock’s market risk, and shows a stock’s volatility relative to the market (i.e., the degree of co-movement with the market return.) • Indicates how risky a stock is if the stock is held in a well-diversified portfolio. • Measure of a firm’s market risk or the risk that remains after diversification • Beta will decide a stock’s required rate of return.

  39. Calculating betas • Run a regression of past returns of a security against past market returns. (Market return is the weighted average of all stocks’ returns at a certain time.) • The slope of the regression line is defined as the beta for the security.

  40. _ ri . 20 15 10 5 . Year rM ri 1 15% 18% 2 -5 -10 3 12 16 _ -5 0 5 10 15 20 rM Regression line: ri = -2.59 + 1.44 rM . -5 -10 ^ ^ Illustrating the calculation of beta

  41. What is the vertical axis? • The stock’s return. • What is the horizontal axis? • Market return. • The steeper the line, the more sensitive the stock’s return relative to the market return, that is, the greater the beta. • What is the regression slope? Beta

  42. Comments on beta • A stock with a Beta of 0 has no systematic risk • A stock with a Beta of 1 has systematic risk equal to the “typical” stock in the marketplace • A stock with a Beta greater than 1 has systematic risk greater than the “typical” stock in the marketplace • A stock with a Beta less than 1 has systematic risk less than the “typical” stock in the marketplace • The market index has a beta=1. • Most stocks have betas in the range of 0.5 to 1.5.

  43. Can the beta of a security be negative? • Yes, if the correlation between Stock i and the market is negative. • If the correlation is negative, the regression line would slope downward, and the beta would be negative. • However, a negative beta is highly unlikely. • A stock that delivers higher return in recession is generally more valuable to investors, thus required rate of return is lower.

  44. _ ri HT: b = 1.30 40 20 T-bills: b = 0 _ rM -20 0 20 40 Coll: b = -0.87 -20 Beta coefficients for HT, Coll, and T-Bills

  45. Comparing expected returns and beta coefficients SecurityExpected Return Beta HT 12.4% 1.32 Market 10.5 1.00 USR 9.8 0.88 T-Bills 5.5 0.00 Coll. 1.0 -0.87 Riskier securities have higher returns, so the rank order is OK.

  46. Until now… • We have argued that well-diversified investors only cares about a stock’s systematic risk (measured by beta). • The higher the systematic risk (non-diversifiable risk), the higher the rate of return investors will require to compensate them for bearing the risk. • This extra return above risk free rate that investors require for bearing the non-diversifiable risk of a stock is called risk premium.

  47. Beta and risk premium • That is: the higher the systematic risk (measured by beta), the greater the reward (measured by risk premium). • risk premium =expected return - risk free rate. • In equilibrium, all stocks must have the same reward to systematic risk ratio. • In expectation, (ri –rRF)/ βi = (rM – rRF)/ βm

  48. The higher the beta, the higher the risk premium. • Market beta=1 • (ri –rRF)/ (rM – rRF)= βi /1 • Thus, we have • ri = rRF + (rM – rRF) βi • You’ve got CAPM!

  49. Capital Asset Pricing Model (CAPM) • Model based upon concept that a stock’s required rate of return is equal to the risk-free rate of return plus a risk premium that reflects the riskiness of the stock after diversification.

  50. The Security Market Line (SML):Calculating required rates of return SML: ri = rRF + (rM – rRF) βi SML is a graphical representation of CAPM • Assume rRF = 5.5% and rM = 10.5%. • The market risk premium is rM – rRF = 10.5% – 5.5% = 5%. • If a stock has a beta=1.5, how much is its required rate of returns?

More Related