420 likes | 536 Views
Connecting Simulations with Observations of the Galactic Center Black Hole. Jason Dexter University of Washington. With Eric Agol, Chris Fragile and Jon McKinney. Accretion. Material falling onto a central object Gravitational binding energy radiation
E N D
Connecting Simulations with Observations of the Galactic Center Black Hole Jason Dexter University of Washington With Eric Agol, Chris Fragile and Jon McKinney
Accretion • Material falling onto a central object • Gravitational binding energyradiation • Any angular momentumdisk, spin+fieldsjets • It’s everywhere: • Stars • Planetary, debris disks • Compact Objects • (Super)novae • Gamma ray bursts • Active Galactic Nuclei CofC Colloquium
Black Holes • a, M • Innermost stable circular orbit • Photon orbit CofC Colloquium
Astrophysical Black Holes • Types: • Stellar mass (100-101 Msun) • Supermassive (106-109 Msun) • IMBH? (103-106 Msun) • No hard surface • Energy lost to black hole • Inner accretion flow probes strong field GR • Astronomy↔Physics Non-accreting BH CofC Colloquium
The MRI • How does matter lose angular momentum? • Magnetized fluid with Keplerian rotation is unstable: “magnetorotational instability” • Velikhov (1959), Chandrasekhar (1961), Balbus & Hawley (1991) • Transports angular momentum outaccretion! • Toy model based on ideal MHD • Field tied to fluid elements • Tension force along field lines, “spring” CofC Colloquium
Toy Model of the MRI • Radially separated fluid elements differentially rotate. • “Spring” slows down inner element and accelerates outer. • Inner element loses angular momentum and falls inward. Outer element moves outward. • Differential rotation is enhanced and process repeats. • Strong magnetic field growth, saturated growth, turbulence CofC Colloquium
GRMHD Gammie et al (2004) • Advantages: • Fully relativistic • Generate MRI, turbulence, accretion from first principles • Limitations: • Numerical & Difficult • Thermodynamics • Radiation • Spatial extent & Shape • Compare to observations! CofC Colloquium
Galactic Center CofC Colloquium
Sagittarius A* Jet or nonthermal electrons far from BH Thermal electrons at BH Simultaneous IR/x-ray flares close to BH? no data available no data available Charles Gammie CofC Colloquium Figure: Moscibrodzka et al. (2009)
Sgr A* VLBI • Largest angular size of any BH • Microarcseconds; baby penguin on moon. • Very long baseline interferometry • High resolution: ~λ/D • Scattering: ~λ2 • Interferometry Fourier transforms CofC Colloquium
Millimeter Sgr A* Doeleman et al (2008) • Precision black hole astrophysics Gaussian FWHM ~4 Rs! CofC Colloquium
Black Hole Shadow • Signature of event horizon • Sensitive to details of accretion flow Bardeen (1973); Dexter & Agol (2009) Falcke, Melia & Agol (2000) CofC Colloquium
GRMHD Models of Sgr A* Moscibrodzka et al (2009) • mm Sgr A* is an excellent application of GRMHD! • Geometrically thick • Insignificant cooling(?) (L/Ledd ~ 10-9) • Thermal electrons near BH • Not perfect… • Collisionless (mfp = 104 Rs) • Electrons CofC Colloquium
Ray Tracing • Method for performing relativistic radiative transfer • Fluid variables radiation at infinity • Calculate light rays assuming geodesics. (no refraction) • Observer “camera” constants of motion • Trace backwards and integrate along portions of rays intersecting flow. • IntensitiesImage, many frequenciesspectrum, many timeslight curve Schnittman et al (2006) CofC Colloquium
Modeling Dexter, Agol & Fragile (2009): • Geodesics from public, analytic code geokerr (Dexter & Agol 2009) • Time-dependent, relativistic radiative transfer • 3D simulation from Fragile et al (2007) • Fit images to 1.3mm (230 GHz) VLBI data over grid in Mtor, i, ξ, tobs • Single temperature UIUC CTA Seminar
GRMHD Fits to VLBI Data i=10 degrees i=70 degrees Dexter, Agol & Fragile (2009); Doeleman et al (2008) 100 μas 10,000 km CofC Colloquium
Improved Modeling Dexter et al (2010): • Fit to millimeter flux at .4-1.3mm (Marrone 2006) • Add simulations from McKinney & Blandford (2009); Fragile et al (2009) • Two-temperature models (parameter Ti/Te; Goldston et al 2005, Moscibrodzka et al 2009) • Joint fits to spectral, VLBI data over grid in Mtor, i, a, Ti/Te CofC Colloquium
Parameter Estimates +35 -15 Sky Orientation Inclination • i = 50 degrees • Te /1010 K = 5.4±3.0 • ξ = -23 degrees • dM/dt = 5 x 10-9 Msun yr-1 • All to 90% confidence +97 -22 Electron Temperature Accretion Rate +15 -2 CofC Colloquium
Comparison to RIAF Values Broderick et al (2009) Sky Orientation Inclination CofC Colloquium
Millimeter Flares • Models reproduce observed flare duration, amplitude, frequency • Stronger variability at higher frequency Solid – 230 GHz Dotted – 690 GHz CofC Colloquium
Comparison to Observed Flares Marrone et al (2008) Eckart et al (2008) CofC Colloquium
Shadow of Sgr A* Shadow may be detected on chile-lmt, smto-chile baselines; otherwise need south pole. CofC Colloquium
Crescents CofC Colloquium
Constraining Models • Similar standard deviation to Fish et al (2009) • Chile/Mexico are best bets for further constraining models • Simultaneous measurement of total flux at 345 GHz would provide a significant constraint 230 GHz 345 GHz Fish et al (2009) Dexter et al (2010) CofC Colloquium
Tilted Disks • No reason to expect Sgr A* isn’t tilted • Best fit images are still crescents • Shadow still visible CofC Colloquium
Conclusions • Fit 3D GRMHD images of Sgr A* to mm observations • Estimates of inclination, sky orientation agree with RIAF fits (Broderick et al 2009) • Electron temperature well constrained • Consistent, but independent accretion rate constraint • Reproduce observed mm flares • LMT-Chile next best chance for observing shadow • Future: Tilted disks, M87, polarization. CofC Colloquium
Event Horizon Telescope From Shep Doeleman’s Decadal Survey Report on the EHT UV coverage (Phase I: black) Doeleman et al (2009) CofC Colloquium
M87 New mass estimate BH angular size ~4/5 of Sgr A*! (Gebhardt & Thomas 2009) CofC Colloquium
Interferometry Morales & Wythe (2009) CofC Colloquium
Log-Normal Ring Models CofC Colloquium
Exciting Observations of Accreting Black Holes Steiner et al. 2010 Schmoll et al (2009) • X-ray binaries • State transitions • QPOs • Iron lines • AGN • QPO(?) • Microlensing • Multiwavelength surveys Fairall-9 LMC X-3: 1983 – 2009 Morgan et al (2010) SWIFT J1247 CofC Colloquium L / LEdd
Sagittarius A* Yuan et al (2003) Dodds-Eden et al (2009) CofC Colloquium
Exciting Observations of Accreting Black Holes • X-ray binaries • State transitions • QPOs • Iron lines • AGN • QPO(?) • Microlensing • Multiwavelength surveys Fender et al (2004) Middleton et al (2010) MCG-6-30-15 Miniutti et al 2007 CofC Colloquium L / LEdd
Finite Speed of Light Toy emissivity, i=50 degrees 690 GHz, i=50 degrees CofC Colloquium
Finite Speed of Light • Emission dominated by narrow range in observer time • Time delays are 10-15% effect on light curves CofC Colloquium
Modeling Dexter, Agol & Fragile (2009): • Geodesics from public, analytic code geokerr (Dexter & Agol 2009) • Time-dependent, relativistic radiative transfer • 3D simulation from Fragile et al (2007) • Need 3D for accurate MRI, variability • a=0.9, doesn’t conserve energy! • Fit images to 1.3mm (230 GHz) VLBI data over grid in Mtor, i, ξ, tobs • Unpolarized; single temperature CofC Colloquium
Light Curves CofC Colloquium
Face-on Fits • Excellent fits to 1.3mm VLBI at all inclinations with 90h, Ti=Te (Dexter, Agol and Fragile 2009) • Low inclinations now ruled out by: • Spectral index constraint (Moscibrodzka et al 2009) • Scarcity of VLBI fits in other models CofC Colloquium
Sgr A* Models • Quiescent: • ADAF/RIAF or jet: steady state, no MRI, non-rel • Toy flare models: -Hotspots -Expanding blobs -Density perturbations But we have a more physical theory! CofC Colloquium
Modeling • Sample limited by existing 3D simulations • Misleading p(a) • For low spin, need hotter accretion flow CofC Colloquium
Millimeter Flares • Strong correlation with accretion rate variability • Approximate emissivity: • Jν ~ nBα, α ≈ 1-2. • Isothermal emission region, ν/νc ≈ 10. • Not heating from magnetic reconnection CofC Colloquium
Caveats • Limited sample • Constant Ti/Te • Unpolarized millimeter emission • Aligned disk/hole CofC Colloquium