1 / 32

Efficient Orbital-Corrected DFT for Large-scale Systems

Explore the efficient Orbital-Corrected Orbital-Free Density Functional Theory (OO-DFT) for large-scale systems, its formulation, applications in materials like Si and fcc Ag, and the advantage over traditional methods.

ralphnorris
Download Presentation

Efficient Orbital-Corrected DFT for Large-scale Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Zhou & Wang, J. Chem. Phys., 124, 081107 (2006). • Zhou & Wang, Int. J. Quantum Chem., in press (2007). • Zhou & Wang, J. Chem. Phys., in press (2007). • Zhou & Wang, J. Chem. Phys., submitted (2007). Principal Coworker Dr. Baojing Zhou • $$$ from NSERC Yan Alexander Wang Orbital-Corrected Orbital-Free Density Functional Theory (OO-DFT) http://www.chem.ubc.ca/faculty/wang Department of Chemistry, University of British Columbia 3 August 2007 ● 2007 IMA Summer Program ● University of Minnesota

  2. Density Functional Theory (DFT) • Kohn-Sham (KS) DFT • Orbital-Free (OF) DFT • Linear-Scaling OF-DFT • Kinetic energy density functional (KEDF) • Local pseudopotential from a bulk environment (BLPS) • Applications of OF-DFT: Si, fcc Ag • Orbital-CorrectedOF-DFT(OO-DFT) • The formulation • Application ofOO-DFT: cubic-diamond (CD) Si, fcc Ag, CD Si vacancy & (100) surface Outline

  3. Density-Functional Theory (DFT) • Total energy as a functional of • HK theorems legitimize as the basic variational variable • Thomas-Fermi-Hohenberg-Kohn (TFHK) equation • Drawback: exact unknown Hohenberg & Kohn, Phys. Rev. 136, B864 (1964).

  4. Orbital-Based Kohn-Sham (KS) Scheme • the KS KEDF • KS equation: • KS effective potential: External potential • scaling due to: Hartree potential • Brillouin-zone sampling • Orbital orthonormalization • = the number of electrons Exchange-correlation potential Kohn & Sham, Phys. Rev. 140, A1133 (1965).

  5. Condensed matter solution to is DFT. • KS-DFT methodis not able to simulate systems containing more than 1000atoms due to the scaling • Linear [] scaling OF-DFT is significantly faster • allowsproperties of>1000 atoms of nearly-free-electron-like metals to be accurately(ca.meV/atom)predicted with DFT Migration of two types of grain boundaries at 300 K in crystalline Nacontaining6714 atoms simulated by OF-DFT for 1.6 ps. Motivation for Linear-Scaling DFT Method: OF-DFT Watson & Madden, PhysChemComm 1, 1 (1998).

  6. OF-DFT avoids bottlenecks present in KS-DFT • No orbital orthonormalization • Periodic systems: No Brillouin-zone (k-point) integration • The kinetic energy • Valence-(core + nuclear) “external” attraction energy(LPS) Linear-Scaling OF-DFT • Two terms in energy pose difficulties without orbitals • Linear scaling is achieved by employingFFTto calculate kinetic, Hartree, and external energies in reciprocal space. • Exchange-correlation energy naturally short-ranged, so

  7. Popular KEDFs • The Thomas-FermiKEDF(exact for uniform electron gas) • The von Weizsäcker KEDF(exact for one-orbital system) • KEDF based on the conventional gradient expansion (CGE) • Defects:these do not exhibit the quantum mechanical idempotency property (required for all physically allowed densities) norcorrect linear-response behavior Wang & Carter, in Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz (Springer, New York, 2002), p. 117.

  8. First-Principles Local Pseudopotential (LPS) • OF-DFT can only use LPSs, , because more accurate non-local pseudopotentials (NLPSs), , involve projections onto orbitals. • Goal: design a LPS that reproduces the KS NLPS density • Strategy: exploit the first HK theorem: • Path : invert the KS equations via the Wang-Parr approach to obtain the KS effective potential • Then, the Hartree and exchange-correlation potentials are removed from the KS effective potential to obtain a global LPS: • Implementation in both atomic (ALPS) and bulk environments (BLPS). For the latter, the globalLPS further decomposed to obtain an atom-centeredBLPS • Wang & Parr, Phys. Rev. A 47, R1591 (1993). • Zhou, Wang & Carter, Phys. Rev. B 69, 125109 (2004).

  9. Pseudopotentials for Si: NLPS vs. ALPS vs. BLPS • The LPSs become much more repulsive near the core ( Bohr) to force the higher angular momentumelectrons out of the core region. • The BLPS is significantly more repulsive than the ALPSin the core region. • Real-space PS for Si • NLPS (green) • ALPS (red) • BLPS (blue) • Coulomb potential (cyan) Si Zhou, Wang & Carter, Phys. Rev. B 69, 125109 (2004).

  10. OF-DFT/BLPS for Si: Total Energies • WGC KEDF improves upon the WT KEDF. • Covalent CD Si: significant deviations using OF-DFT due to localized bonding. • Metallic fcc Si: shape of the EOS from OF-DFT very close to that from KS-DFT. Zhou, Ligneres & Carter, J. Chem. Phys. 122, 044103 (2005).

  11. Density along the diagonal of the (001) plane • Equation of state (EOS) OF-DFT/BLPS for the fcc Ag: Approximate KEDFs • WGC KEDFnot used due to convergence problems • OF density using is better than using WT KEDF • Unacceptable errors due to KEDF exist in the EOS from OF-DFTdue to strongly localized d-electronsnew KEDFs needed Zhou & Carter, J. Chem. Phys. 122, 184108 (2005).

  12. KS-DFT: , but still expensive, SCF iterations • OF-DFT: , lack accurate KEDF and LPS • LPS: not transferable enough, less accurate than NLPS • withoutexpensive many SCF KS iterations • , without the limits of accurate KEDF and LPS • able to use NLPS, not only LPS Orbital-Corrected OF-DFT (OO-DFT) • Most of first-principles Quantum Mechanical methods do not scale linearly • Bottlenecks of Density Functional Theory(DFT)calculations • Goals: (1) Apply DFTtolarge systems (>1000atoms) (2) Combine the merits of OF-DFT and KS-DFT Zhou & Wang, J. Chem. Phys. 124, 081107(2006).

  13. from OF-DFT • Singlenon-self-consistent (NSC) KS iteration • : local (LPS) or nonlocal (NLPS) Essence of OO-DFT • KS effective potential from • from OO-DFT Zhou & Wang, J. Chem. Phys. 124, 081107(2006).

  14. Hohenberg-Kohn-Sham (HKS) functional • We propose the Zhou-Wang- (ZW) functional • : interpolation parameter • Value ofdepends on and • Allows systematic error cancellation Total Energies in OO-DFT • Harris functional • Usually, not always, • Chelikowsky & Louie, Phys. Rev. B 29, 3470 (1984). • Harris, Phys. Rev. B 31, 1770 (1985). • Zhou & Wang, J. Chem. Phys. 124, 081107 (2006).

  15. Value of depends on the chemical environment, not very sensitive to the size of the system. Rational of the Zhou-Wang- Functional • Linear-response theory and functional expansion linear-response kernel • Exact linear interpolation IF ??? • The Zhou-Wang- (ZW) functional • Finnis, J. Phys.: Condens. Matter 2, 331 (1990). • Zhou & Wang, J. Chem. Phys. 124, 081107 (2005).

  16. Test the ZWl functional: Total Energies of CD Si • OF-DFT with less optimal KEDF is completely wrong! • better than • Optimal : 0.28 for the BLPS; 0.30for the NLPS • The ZWfunctional≈KS-DFT, even for NLPS! Zhou & Wang, J. Chem. Phys. 124, 081107(2006).

  17. Total energies: Test the ZWl functional: fcc Ag (OO1 vs. OO2) • 1st NSCKS iteration is not enough for chemical accuracy • 2ndNSC KS iteration • OO1= 1stNSC KS iteration OO2 =2ndNSC KS iteration Zhou & Wang, J. Chem. Phys. 124, 081107(2006).

  18. OO1 • OO2 • BLPS: better • NLPS: better • Optimal : • 0.39for the BLPS • 0.65 for the NLPS • much better • KS-DFT well reproduced • Optimal : • 0.41 for the BLPS • 0.58 for the NLPS • ≈ KS-DFT Test the ZWl functional: Total Energies of fcc Ag Zhou & Wang, J. Chem. Phys. 124, 081107(2006).

  19. Summary and Conclusions (I) • Require only a single or doubleNSCKS-DFT iterations • OO-DFT remediesdrawbacks of OF-DFT • OO-DFT islinear-scalingand can handle large systems (>1000 atoms) • The ZW functional ≈ KS-DFT!!! • Two irrevocable factors for the success of OO-DFT • High-quality from the state-of-the-art OF-DFT • The built-in systematic error cancellation in the ZW functional • Ab-initio OO-DFT molecular dynamics (OOMD) is coming! • Combining CPMD with BOMD • Car & Parrinello, Phys. Rev. Lett. 55, 2471 (1985). • Radeke & Carter, Annu. Rev. Phys. Chem.48, 243 (1997). • Strutinsky, Nucl. Phys. A 122, 1 (1968); Yannouleas et al., Phys. Rev. B 57, 4872 (1998); Ullmo et al., ibid.63, 125339 (2001); Zhou & Wang, J. Chem. Phys., in press (2007). • Benoit et al., Phys. Rev. Lett. 87, 226401 (2001); Zhu & Trickey, IJQC100, 245 (2004).

  20. Dynamical Prediction of  • Errors in EHKS and EHarris to ()2 • Linear-response kernel • Interpolation scheme • Finnis, J. Phys.: Condens. Matter2, 331 (1990). • Zhou & Wang, J. Chem.Phys., in press & submitted (2007).

  21. Good Guess for the exact KS density • At 1st iteration (enough for nonmetallic main-group materials) • infrom OF-DFT • outfrom OO1 • Kerker’smatrix used for density mixing • At 2nd iteration, Pulay’sDIISmethod used for density mixing (enough for transition metals with localized d-electrons) • Zhou & Wang, J. Chem. Phys., in press (2007). • Zhou & Wang, J. Chem. Phys., submitted (2007). • Kresse & Furthmüller, Comput. Mater. Sci.6, 15 (1996). • Kerker, Phys. Rev. B23, 3082 (1981).

  22. Various Improved Total Energies • Corrected HKS & Harris functionals: cHKS & cHarris • Interpolation schemes: ZW& WZ • Strutinsky shell correction model: SCM • Strutinsky, Nucl. Phys. A 122, 1 (1968). • Yannouleas et al., Phys. Rev. B 57, 4872 (1998). • Ullmo et al., Phys. Rev. B63, 125339 (2001). • Zhou & Wang, J. Chem. Phys., in press (2007). • Numerical equivalencies • Zhou & Wang, Int. J. Quantum Chem., in press (2007). • Zhou & Wang, J. Chem. Phys., submitted (2007).

  23. Test theDynamically Determined : Total Energies Cubic diamond (CD) • in from OF-DFT • only 1 iteration • OO1: Zhou & Wang, J. Chem. Phys., in press (2007).

  24. OO2: Test theDynamically Determined : Total Energies (fcc) OO1 • in from OF-DFT • only 2 iterations Zhou & Wang, J. Chem. Phys., in press (2007).

  25. Test theDynamically Determined :CD Si Vacancy • Atomic densities • as initial guess • 1~2 magnitudes more accurate than conventional schemes. Zhou & Wang, J. Chem. Phys., submitted (2007).

  26. Test theDynamically Determined :CD Si (100) Surface • Atomic densities • as initial guess • 1~2 magnitudes more accurate than conventional schemes. Zhou & Wang, J. Chem. Phys., submitted (2007).

  27. Alkali metals • Alkaline earth metals • Poor metals • H • Nonmetals • Nobel gases • Transition metals • Lanthanide series • Actinide series Summary and Conclusions: the O3 Paradigm • O1: OF-DFT (Orbital-Free Density Functional Theory) • O2: OO1(OF-DFT + 1-iteration OO-DFT, a priori & a posteriori) • O3: OO2(OF-DFT + 2-iteration OO-DFT, a priori & a posteriori) Wang & Carter, in Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz (Springer, New York, 2002), p. 117.

  28. Alkali metals • Alkaline earth metals • Poor metals • H • Nonmetals • Nobel gases • Transition metals • Lanthanide series • Actinide series Summary and Conclusions: the O3 Paradigm • O1: OF-DFT (Orbital-Free Density Functional Theory) • O2: OO1(OF-DFT + 1-iteration OO-DFT, a priori & a posteriori) • O3: OO2(OF-DFT + 2-iteration OO-DFT, a priori & a posteriori) • Zhou & Wang, J. Chem. Phys., 124, 081107 (2006). • Zhou & Wang, Int. J. Quantum Chem., in press (2007). • Zhou & Wang, J. Chem. Phys., in press & submitted (2007).

  29. Alkali metals • Alkaline earth metals • Poor metals • H • Nonmetals • Nobel gases • Transition metals • Lanthanide series • Actinide series Summary and Conclusions: the O3 Paradigm • O1: OF-DFT (Orbital-Free Density Functional Theory) • O2: OO1(OF-DFT + 1-iteration OO-DFT, a priori & a posteriori) • O3: OO2(OF-DFT + 2-iteration OO-DFT, a priori & a posteriori) • Zhou & Wang, J. Chem. Phys., 124, 081107 (2006). • Zhou & Wang, Int. J. Quantum Chem., in press (2007). • Zhou & Wang, J. Chem. Phys., in press & submitted (2007).

More Related