1 / 19

Chapter 7 Introduction to LC-3 Assembly Language

Chapter 7 Introduction to LC-3 Assembly Language. Assembly Language Assembly Process Using the Editor & Simulator for Assembly Language Programming. LC-3 Assembly Language Syntax. Each line of a program is one of the following: an instruction an assember directive (or pseudo-op)

ramla
Download Presentation

Chapter 7 Introduction to LC-3 Assembly Language

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 7Introduction to LC-3Assembly Language • Assembly Language • Assembly Process • Using the Editor & Simulator for Assembly Language Programming

  2. LC-3 Assembly Language Syntax • Each line of a program is one of the following: • an instruction • an assember directive (or pseudo-op) • a comment • Whitespace (between symbols) and case are ignored. • Comments (beginning with “;”) are also ignored. • An instruction has the following format: LABEL OPCODE OPERANDS ;COMMENTS optional mandatory Example:Loop1 ADD R3, R3, #-1 ; Decrement R3

  3. Assembler Directives • Pseudo-operations • do not refer to operations executed by program • used by assembler • look like instruction, but “opcode” starts with dot

  4. Compute the Sum of 12 Integers • Program begins at location x3000. • Integers begin at location x3100. R1  x3100R3  0 (Sum)R2  12(count) R2=0? R4  M[R1] R3  R3+R4R1  R1+1 R2  R2-1 NO YES R1: “Array” index pointer (Begin with location 3100) R3: Accumulator for the sum of integers R2: Loop counter (Count down from 12) R4: Temporary register to store next integer

  5. Compute the Sum of 12 Integers R1: “Array” index pointer (Begin with location 3100) R3: Accumulator for the sum of integers R2: Loop counter (Count down from 12) R4: Temporary register to store next integer

  6. Compute the Sum of 12 Integers - Program R1  x3100R3  0 (Sum)R2  12(count) .ORIG x3000 ; Add 12 integers ; R1: Pointer to integer ; R2: Loop counter ; R3: Accumulator ; R4: Temporary register LD R1 DATAADDR ; Load pointer ; to integers AND R3, R3, #0 ; Accumulator = 0 AND R2, R2, #0 ; Counter = 12 ADD R2, R2, #12 ; Add integers LOOP BRZ STOP ; Stop when done LDR R4, R1, #0 ; Add next integer ADD R3, R3, R4 ADD R1, R1, #1 ; Inc pointer ADD R2, R2, #-1 ; Dec counter BRNZP LOOP STOP BRNZP STOP ; Stop DATAADDR .FILL x3100 .END Note: Used DATAADDR to hold address of DATA. Why? R2=0? R4  M[R1] R3  R3+R4R1  R1+1 R2  R2-1 NO YES

  7. Compute the Sum of 12 Integers - Data .ORIG x3100 ; Data section DATA .FILL x0001 ; 12 integers .FILL x0002 .FILL x0004 .FILL x0008 .FILL xFFFF .FILL xFFFE .FILL xFFFC .FILL xFFF8 .FILL x0007 .FILL x0004 .FILL x0002 .FILL x0003 .END

  8. Compute the Sum of 12 Integers • Use the LC3 Editor to enter the program and data and store them as add1.asm data1.asm • Use the LC3 Editor to assemble them: add1.asm  add1.obj data1.asm  data1.obj • Then use the LC3 Simulator to test them: load add1.obj and data1.obj • Set the PC, appropriate breakpoints, and execute the program (single step or run)

  9. Sum of 12 Integers in One Package .ORIG x3000 ; Add 12 integers ; R1: Pointer to integer ; R2: Loop counter ; R3: Accumulator ; R4: Temporary register LEA R1, DATA ; Load pointer to integers AND R3, R3, #0 ; Accumulator = 0 AND R2, R2, #0 ; Counter = 12 ADD R2, R2, #12 LOOP BRZ STOP ; Stop when done LDR R4, R1, #0 ; Add next integer ADD R3, R3, R4 ADD R1, R1, #1 ; Inc pointer ADD R2, R2, #-1 ; Dec counter BRNZP LOOP STOP BRNZP STOP ; Stop ; Data section DATA .FILL x0001 ; 12 integers .FILL x0002 .FILL x0004 .FILL x0008 .FILL xFFFF .FILL xFFFE .FILL xFFFC .FILL xFFF8 .FILL x0007 .FILL x0004 .FILL x0002 .FILL x0003 .END Note: Used LEA to load pointer to data. Why?

  10. One Pass vs Two Pass Assemblers • What does the assembler need to do? • Check for syntax errors • Build a symbol table • Assemble statements • Use pseudo-op instructions • Resolve Addresses • Create a load module • Two Pass – Checks for syntax errors and builds the Symbol Table during first pass, resolves operand addresses during second pass. • One Pass – Checks for syntax errors, builds the Symbol Table, and resolves operand addresses during the first pass. So why have a two pass?

  11. clear R3 add R3 to R2 decrement R1 R1 = 0? No Yes HALT An Assembly Language Program Example ; ; Program to multiply a number by the constant 6 ; .ORIG x3050 LD R1, SIX ; Constant 6 LD R2, NUMBER ; Number AND R3, R3, #0 ; Clear R3 ; The product. ; The multiply loop AGAIN ADD R3, R3, R2 ; Accumulate product ADD R1, R1, #-1 ; Dec counter BRp AGAIN HALT NUMBER .BLKW 3 ; Value of Number SIX .FILL x0006 .END Symbol Table:Symbol Address AGAIN x3053 NUMBER x3057 SIX x305A

  12. What if there were More than One Object (Load) File • Example Symbol Table: Symbols Externals Exports Addresses Start x3000 Number x300A Data ? Value x30E0 • The “Linker/Loader” would generate another “global symbol table” to resolve Externals & Exports at Load time. It would only address the Externals (Imports) and Exports (Internals). • An Export is a value make available to other modules • An External is a value expected to be defined in another module

  13. Trap Codes • LC-3 assembler provides “pseudo-instructions” foreach trap code, so you don’t have to remember their TRAP #’s.

  14. Program to add two single digit integers .ORIG x3000 ; begin at x3000 ; input two numbers IN ;input an integer character (ascii) {TRAP 23} LD R3, HEXN30 ;subtract x30 to get integer ADD R0, R0, R3 ADD R1, R0, #0 ;move the first integer to register 1 IN ;input another integer {TRAP 23} ADD R0, R0, R3 ;convert it to an integer ; add the numbers ADD R2, R0, R1 ;add the two integers ; print the results LEA R0, MESG ;load the address of the message string PUTS ;"PUTS" outputs a string {TRAP 22} ADD R0, R2, #0 ;move the sum to R0, to be output LD R3, HEX30 ;add 30 to integer to get integer character ADD R0, R0, R3 OUT ;display the sum {TRAP 21} ; stop HALT ;{TRAP 25} ; data MESG .STRINGZ "The sum of those two numbers is: “ HEXN30 .FILL xFFD0 ; -30 HEX HEX30 .FILL x0030 ; 30 HEX .END

  15. Program to add two single digit integers • Enter, • Assemble, • Load • Execute, and Test the program.

  16. Write a program to count the 1’s in register R0 ; Program to count 1's in Register R0 ; R3 is a working copy of R0 ; R1 contains the count ; R2 is a loop counter .orig x3100 ADD R3, R0, #0 ;copy R0 into R3 AND R1, R1, #0 ;clear count ADD R3, R3, #0 ;test highest bit BRZP NEXT ;count if neg ADD R1, R1, #1 NEXT AND R2, R2, #0 ;check remaining 15 bits ADD R2, R2, #-15 ; R2 = -15 (count) LOOP ADD R3, R3, R3 ;shift R3 left BRZP AGAIN ADD R1, R1, #1 ;count if neg AGAIN ADD R2, R2, #1 ;inc count BRN LOOP HALT .END

  17. Program to Check for overflow ; Add R3=R0+R1, R2=0 indicates no overflow ; .ORIG x3000 AND R2, R2, #0 ;Initially R2=0 (no Overflow assumed) ADD R3, R0, R1 ;R3=R0+R1 ; test for overflow ADD R0, R0, #0 ;test R0 BRN NEG ;Branch if RO negative ADD R1, R1, #0 ;R0 pos, test R1 BRN DONE ;R0 pos, R1 neg -> No overflow ADD R3, R3, #0 ;R0 pos, R1 pos, maybe, test R3 BRZP DONE ;R3 also pos -> no overflow ADD R2, R2, #1 ;Set R2=1 indicating overflow BRNZP DONE R0NEG ADD R1, R1, #0 ;R0 neg, test R1 BRZP DONE ;R0 neg, R1 pos -> No overflow ADD R3, R3, #0 ;R0 neg, R1 neg, maybe, test R3 BRN DONE ;R3 also neg -> no overflow ADD R2, R2, #1 ;Set R2=1 indicating overflow DONE HALT .END

  18. Count the occurrences of a character in a file.

  19. ; Program to count occurrences of a character in a file. ; Character to be input from the keyboard. ; Result to be displayed on the monitor. ; Program only works if no more than 9 occurrences are found. ; ; ; Initialization ; .ORIG x3000 AND R2, R2, #0 ; R2 is counter, initially 0 LD R3, PTR ; R3 is pointer to character file GETC ; R0 gets input character LDR R1, R3, #0 ; R1 gets first character from file ; ; Test character for end of file ; TEST ADD R4, R1, #-4 ; Test for EOT (ASCII x04) BRz OUTPUT ; If done, prepare the output ; ; Test character for match. If a match, increment count. ; NOT R1, R1 ADD R1, R1, R0 ; If match, R1 = xFFFF NOT R1, R1 ; If match, R1 = x0000 BRnp GETCHAR ; If no match, do not increment ADD R2, R2, #1 ; ; Get next character from file. ; GETCHAR ADD R3, R3, #1 ; Point to next character. LDR R1, R3, #0 ; R1 gets next char to test BRnzp TEST ; ; Output the count. ; OUTPUT LD R0, ASCII ; Load the ASCII template ADD R0, R0, R2 ; Covert binary count to ASCII OUT ; ASCII code in R0 is displayed. HALT ; Halt machine ; ; Storage for pointer and ASCII template ; ASCII .FILL x0030 ; ASCII offset PTR .FILL x4000 ; PTR to character file .END

More Related