1 / 21

Overview of Internal and External Sorting Techniques

Learn about Internal, External, and In-Place sorting methods. Dive into definitions, algorithms, and advantages of Insertion, Bubble, and Selection sort. Detailed analysis for each technique's time complexity included.

rana-phelps
Download Presentation

Overview of Internal and External Sorting Techniques

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 8

  2. Some Definitions • Internal Sort • The data to be sorted is all stored in the computer’s main memory. • External Sort • Some of the data to be sorted might be stored in some external, slower, device. • In Place Sort • The amount of extra space required to sort the data is constant with the input size.

  3. Insertion Sort • Idea: like sorting a hand of playing cards • Start with an empty left hand and the cards facing down on the table. • Remove one card at a time from the table, and insert it into the correct position in the left hand • compare it with each of the cards already in the hand, from right to left • The cards held in the left hand are sorted • these cards were originally the top cards of the pile on the table

  4. 24 10 6 Insertion Sort To insert 12, we need to make room for it by moving first 36 and then 24. 36 12

  5. 24 10 6 Insertion Sort 36 12

  6. 24 36 Insertion Sort 10 6 12

  7. Insertion Sort input array 5 2 4 6 1 3 at each iteration, the array is divided in two sub-arrays: left sub-array right sub-array unsorted sorted

  8. Insertion Sort

  9. 1 2 3 4 5 6 7 8 a1 a2 a3 a4 a5 a6 a7 a8 key INSERTION-SORT Alg.:INSERTION-SORT(A) for j ← 2to n do key ← A[ j ] Insert A[ j ] into the sorted sequence A[1 . . j -1] i ← j - 1 while i > 0 and A[i] > key do A[i + 1] ← A[i] i ← i – 1 A[i + 1] ← key • Insertion sort – sorts the elements in place

  10. cost times c1 n c2 n-1 0 n-1 c4 n-1 c5 c6 c7 c8 n-1 Analysis of Insertion Sort INSERTION-SORT(A) for j ← 2 to n do key ← A[ j ] Insert A[ j ] into the sorted sequence A[1 . . j -1] i ← j - 1 while i > 0 and A[i] > key do A[i + 1] ← A[i] i ← i – 1 A[i + 1] ← key tj: # of times the while statement is executed at iteration j

  11. Best Case Analysis “while i > 0 and A[i] > key” • The array is already sorted • A[i] ≤ key upon the first time the while loop test is run (when i= j -1) • tj= 1 • T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) = (c1 + c2 + c4 + c5 + c8)n + (c2 + c4 + c5 + c8) = an + b = (n)

  12. Worst Case Analysis • The array is in reverse sorted order • Always A[i] > key in while loop test • Have to compare keywith all elements to the left of the j-th position  compare with j-1 elements  tj = j a quadratic function of n • T(n) = (n2) order of growth in n2 “while i > 0 and A[i] > key” using we have:

  13. Insertion Sort - Summary • Advantages • Good running time for “almost sorted” arrays (n) • Disadvantages • (n2) running time in worst

  14. 8 4 6 9 2 3 1 Bubble Sort • Idea: • Repeatedly pass through the array • Swaps adjacent elements that are out of order • Easier to implement, but slower than Insertion sort i 1 2 3 n j

  15. 1 1 8 8 8 1 1 8 1 8 8 1 1 2 2 4 2 4 2 2 1 8 4 4 8 4 6 6 4 6 8 4 1 3 4 6 3 3 3 9 9 1 6 9 6 6 4 4 4 6 8 4 6 9 6 9 2 2 6 8 4 9 9 1 9 2 2 2 2 2 9 1 3 8 6 2 6 8 3 1 3 3 9 3 9 3 9 3 9 3 3 i = 1 j i = 2 j i = 1 j i = 3 j i = 1 j i = 4 j i = 1 j i = 5 j i = 1 j i = 6 j i = 1 i = 1 j j i = 7 j Example

  16. 8 4 6 9 2 3 1 i = 1 j Bubble Sort Alg.:BUBBLESORT(A) fori  1tolength[A] do forj  length[A]downtoi + 1 do ifA[j] < A[j -1] then exchange A[j]  A[j-1] i

  17. Bubble-Sort Running Time Alg.: BUBBLESORT(A) fori  1tolength[A] do forj  length[A]downtoi + 1 do ifA[j] < A[j -1] then exchange A[j]  A[j-1] Thus,T(n) = (n2) c1 c2 c3 Comparisons:  n2/2 c4 Exchanges:  n2/2 T(n) = c1(n+1) + c2 c3 c4 (c2 + c2 + c4) = (n) +

  18. Selection Sort • Idea: • Find the smallest element in the array • Exchange it with the element in the first position • Find the second smallest element and exchange it with the element in the second position • Continue until the array is sorted • Disadvantage: • Running time depends only slightly on the amount of order in the file

  19. 1 1 1 1 1 1 8 1 4 2 2 2 2 2 2 4 3 3 6 3 6 3 6 3 9 9 4 9 9 4 4 4 6 4 6 4 9 2 6 2 3 8 3 3 6 6 8 9 8 8 8 1 9 8 9 8 Example

  20. 8 4 6 9 2 3 1 Selection Sort Alg.:SELECTION-SORT(A) n ← length[A] for j ← 1to n - 1 do smallest ← j for i ← j + 1to n do if A[i] < A[smallest] then smallest ← i exchange A[j] ↔ A[smallest]

  21. n2/2 comparisons • n exchanges Analysis of Selection Sort cost times c1 1 c2 n c3 n-1 c4 c5 c6 c7 n-1 Alg.:SELECTION-SORT(A) n ← length[A] for j ← 1to n - 1 do smallest ← j for i ← j + 1to n do if A[i] < A[smallest] then smallest ← i exchange A[j] ↔ A[smallest]

More Related