360 likes | 503 Views
Coordination-Driven Self-Assembly of Metallodendrimers Possessing Well-Defined and Controllable Cavities as Cores. Hai-Bo Yang,* Adam M. Hawkridge, Songping D. Huang, Neeladri Das, Scott D. Bunge, David C. Muddiman, and Peter J. Stang*. J. Am. Chem. Soc. 2007 , 129 , 2120-2129.
E N D
Coordination-Driven Self-Assembly of Metallodendrimers Possessing Well-Defined and Controllable Cavities as Cores Hai-Bo Yang,* Adam M. Hawkridge, Songping D. Huang, Neeladri Das, Scott D. Bunge, David C. Muddiman, and Peter J. Stang* J. Am. Chem. Soc.2007, 129, 2120-2129.
The Dendritic Structure Host-guest chemistry Material science Membrane chemistry Catalysis Stoddart, J. F. et al.Prog. Polym. Sci. 1998, 23, 1-56.
“Convergent” Dendrimer Growth Stoddart, J. F. et al.Prog. Polym. Sci. 1998, 23, 1-56.
“Divergent” Dendrimer Growth Stoddart, J. F. et al.Prog. Polym. Sci. 1998, 23, 1-56.
Metallodendrimer Newkome, G. R. et al.Chem. Rev.1999, 99, 1689-1746.
Metals as Branching Centers Denti, G. et al. J. Am. Chem. Soc.1992, 114, 2944-2950.
Metals as Building Block Connectors Puddephatt, R. J. et al.Organometallics1995, 14, 1681-1687.
Metals as Cores Fréchet, J. M. et al. Chem. Mater.1998, 10, 30-38.
Metals as Termination Groups (Surface Functionalization) Lemo, J.; Heuze, K.; Astruc, D. Org. Lett.2005, 7, 2253-2256.
Metals as Structural Auxiliaries Kaneda, K. J. Am. Chem. Soc.2004, 126, 1604-1605.
Supramolecular Coordination Chemistry Hydrogen bonding Metal-ligand coordination π-π stacking Eletrostatic interactions van der Waals forces Hydrophobic interactions Hydrophilic interactions etc. Mirkin, C. A. et al.Angew. Chem. Int. Ed.2001, 40, 2022-2043.
Supramolecular Assembly of Polyhedra Stang, P. J.; Olenyuk, B. Acc. Chem. Res.1997, 30, 502-518
Self-Assembly of Rhomboidal and Hexagonal, “Snowflake-Shaped” Metallodendrimers.
Synthesis of [G0]-[G3] 120o Angular Dendritic Donor Precursors Sonogashira coupling acylation hydrolysis etherification
Structures of [G0]-[G3] 120o Angular Donor Precursors 5a-d
Self-Assembly of Rhomboidal Metallodendrimers 7a-d 31P{1H} NMR δ14.6 ppm (-6.4 ppm) 1JPt-P=2707.7 (-177 Hz) 96-99% Hα Hβ 5a 8.60 7.39-7.45 5b 8.60 7.33-7.44 5c 8.60 7.31-7.42 5d 8.60 7.31-3.42 Hα Hβ 7a 9.35, 8.72 7.59 7b 9.36, 8.70 7.59 7c 9.37, 8.68 7.59 7d 9.36, 8.65 7.58
Structures of [G0]-[G3]-Rhomboidal Metallodendrimers 7a-d 7a 7b 7c 7d
Calculated and Experimental ESI-MS Spectra of [G0]-[G2]-Rhomboidal Metallodendrimers 7a-c [M-2NO3]2+ [M-3NO3]3+ [M-2NO3]2+ [M-3NO3]3+ [M-2NO3]2+ [M-3NO3]3+ C130H172N8O14P8Pt4 C158H196N8O18P8Pt4 C214H244N8O26P8Pt4 H1(100.0%) C12(98.9%) 13(1.1%) N14(99.6%) 15(0.4%) O16(99.8%) 18(0.2%) P31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) Isotope %
Calculated and Experimental ESI-FT-ICR-MS Spectra of [G3]-Rhomboidal Metallodendrimer 7d C326H340N8O42P8Pt4 Isotope % H1(100.0%) C12(98.9%) 13(1.1%) N14(99.6%) 15(0.4%) O16(99.8%) 18(0.2%) P31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%)
Crystal Structure of [G0]-Rhomboidal Metallodendrimer 7a 3.3 nm long 2.8 nm wide
Crystal Structure of [G1]-Rhomboidal Metallodendrimer 7b 4.2 nm long 2.8 nm wide
Wireframe Representation of the Crystal Structure of Metallodendrimer 7a and 7b 1.3 nm 2.3 nm
Self-Assembly of Hexagonal, “Snowflake-Shaped” Metallodendrimers 10a-d and 11a-d
31P NMR Spectra of [G3]-Hexagonal Metallodendrimer 10d and 11d Compaired with 8 δ (-6.5 ppm) Δ1JPPt = -131 Hz Compaired with 9 δ (-6.4 ppm) Δ1JPPt = -150 Hz
Calculated and Experimental ESI-FT-ICR-MS Spectra of [G0]-[G2]-Hexagonal Metallodendrimers 10a-c Isotope % H1(100.0%) C12(98.9%) 13(1.1%) N14(99.6%) 15(0.4%) O16(99.8%) 18(0.2%) F19(100.0%) P31(100.0%) S 32(95.0%) 33(0.8%) 34(4.2%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) C282H348F36N12O42P24Pt12S12 C366H420F36N12O54P24Pt12S12 C534H564F36N12O78P24Pt12S12
Full ESI-FT-ICR Mass Spectrum of [G1]-Hexagonal Metallodendrimer 10b
Calculated and Experimental ESI-FT-ICR-MS Spectra of [G0]-[G2]-Hexagonal Metallodendrimers 11a-c Isotope % H1(100.0%) C12(98.9%) 13(1.1%) N14(99.6%) 15(0.4%) O16(99.8%) 18(0.2%) F19(100.0%) P31(100.0%) S 32(95.0%) 33(0.8%) 34(4.2%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) C390H516F36N12O42P24Pt12S12 C474H588F36N12O54P24Pt12S12 C642H732F36N12O78P24Pt12S12
Space-Filling Models of Hexagonal Metallodendrimers 10d and 11d Optimized with the MM2 Force-Field Simulation
Conclusions • This approach makes it possible to prepare a variety of metallodendrimers with well-defined and controlled cavities as cores through the proper choice of subunits with predefined angles and symmetry, which enriches the library of different-shaped cavity-cored metallodendrimers. • Metallodendrimers having nonplanar hexagonal cavities with different internal radii of approximately 1.6, 2.5, and 2.9 nm have been obtained. • We have demonstrated that highly convergent synthetic protocols of appropriate predetermined building blocks allow the rapid construction of novel cavity-cored metallodendrimers. The shape of the cavities of the supramolecular dendrimers can be rationally designed to be either a rhomboid or a hexagon.
Acylation Mechanism of acylation
Hydrolysis of Esters Base-catalysed hydrolysis Mechanism of hydrolysis Step 1 : Reversible attack at carbonyl carbon by base Step 2 : Protion transfer
Mechanism of Sonogashira Coupling organic-chemistry.org
Mechanism of Heck Coupling organic-chemistry.org
Mechanism of Suzuki Coupling organic-chemistry.org