1 / 59

Yoshiaki ONO ( Univ. Tokyo ) K. Shimasaku , M. Yoshida, S. Okamura (Univ. Tokyo) ,

Oct. 6-10. 2008 “Understanding Lyman-alpha Emitters”, MPIA. Stellar Populations of z=3.1 and 3.7 Lyman-Alpha Emitters with K~23-27 from deep 0.5-8.0um photometry. Yoshiaki ONO ( Univ. Tokyo ) K. Shimasaku , M. Yoshida, S. Okamura (Univ. Tokyo) ,

raoul
Download Presentation

Yoshiaki ONO ( Univ. Tokyo ) K. Shimasaku , M. Yoshida, S. Okamura (Univ. Tokyo) ,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Oct. 6-10. 2008 “Understanding Lyman-alpha Emitters”, MPIA Stellar Populations of z=3.1 and 3.7 Lyman-Alpha Emitters with K~23-27 from deep 0.5-8.0um photometry Yoshiaki ONO(Univ. Tokyo) K. Shimasaku, M. Yoshida, S. Okamura (Univ. Tokyo), M. Ouchi (OCIW), M. Akiyama (Tohoku Univ.), J. Dunlop (UBC), D. Farrah (Cornell Univ.), R. McLure (ROE)

  2. 3/53 Table of contents Introduction Data SED Fitting Results and Discussion

  3. 4/53 SED Fitting(from Opt. only) - For understanding stellar pops. of high-z LAE, NIR images are very important. 4000Å 1216Å hoge NB - Left figure: V -:M* ~ 3.6×1010 Mo -:M* ~ 1.5×109 Mo R i' z' B - only optical data can weakly constrain on its stellar pop.

  4. 5/53 Table of contents Introduction Data SED Fitting Results and Discussion

  5. 6/53 Wide & Deep 0.5–8.0 μm images 1.3° UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam

  6. 7/53 Wide & Deep 0.5–8.0 μm images 1.3° UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam H K [4.5] J [3.6] [5.8] [8.0] 3σ limitmag z’ i’ V R B wavelength[Å] 104 105

  7. 6/47 Wide & Deep 0.5 – 8.0 μm images 1216Å 4000Å NB V 1.3° B R i' z' UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam JHK (UKIRT/WFCAM) 3.6-8.0μm (Spitzer/IRAC) H K [4.5] J [3.6] [5.8] [8.0] 3σ limitmag z’ i’ V R B wavelength[Å] 104 105

  8. 6/47 Wide & Deep 0.5 – 8.0 μm images 1216Å 4000Å NB V 1.3° B R i' z' UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam JHK (UKIRT/WFCAM) 3.6-8.0μm (Spitzer/IRAC) H K [4.5] J [3.6] [5.8] [8.0] 3σ limitmag z’ i’ V R B wavelength[Å] 104 105

  9. 10/53 Near Infrared Data Quality - This figure summerise NIR data qualities used in early studies. ECDF-S, [3.6] (Gawiser+07, Lai+08) ECDF-S, K (Gawiser+06) GOODS-N, [3.6] (Lai+07) GOODS-S, [3.6] (Nilsson+07, Finkelstein+08) HUDF, [3.6] (Pirzkal+07)

  10. 11/53 Near Infrared Data Quality - This figure summerise NIR data qualities used in early studies. SpUDS, [3.6] (This Study) - SpUDS data used in our study is - almost equally deep - more than two times larger ECDF-S, [3.6] (Gawiser+07, Lai+08) ECDF-S, K (Gawiser+06) GOODS-N, [3.6] (Lai+07) GOODS-S, [3.6] (Nilsson+07, Finkelstein+08) HUDF, [3.6] (Pirzkal+07)

  11. 12/53 Near Infrared Data Quality - This figure summerise NIR data qualities used in early studies. SpUDS, [3.6] (This Study) - SpUDS data used in our study is - almost equally deep - more than two times larger ECDF-S, [3.6] (Gawiser+07, Lai+08) ECDF-S, K (Gawiser+06) GOODS-N, [3.6] (Lai+07) GOODS-S, [3.6] (Nilsson+07, Finkelstein+08) This data enable us to get better constraint on stellar pops. of LAEs. HUDF, [3.6] (Pirzkal+07)

  12. 13/53 LAE samples ● original samples (SXDS LAE; Ouchi+08)

  13. 14/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) ● K-undetected

  14. 15/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) analyzed individually ● K-undetected

  15. 16/53 A K-detected LAE NB R i' z' 20’’ JHK 3.6μm 4.5μm 5.8μm 8.0μm

  16. 17/53 A K-detected LAE NB R i' z' 20’’ JHK We can clearly see in K & [3.6] :-) 3.6μm 4.5μm 5.8μm 8.0μm

  17. 18/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) ● K-undetected stacking

  18. A stacked LAE 19/53 R i' z' 20’’ JHK 3.6μm 4.5μm 5.8μm 8.0μm

  19. A stacked LAE 20/53 R i' z' 20’’ JHK We can see in K & [3.6] :-) 3.6μm 4.5μm 5.8μm 8.0μm

  20. 21/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) ● K-undetected stacking

  21. LAE samples (K-band Images) 22/53 ● K-detected (>3σ) 20’’ ● K-undetected 48 (R<26.3) 152 (R≧26.3) 61

  22. 23/53 Table of contents Introduction Data SED Fitting Results and Discussion

  23. 24/53 SED Fitting • ■ Stellar Population Synthesis Model ■ Parameters ● Stellar Mass ● Age ● Dust Extinction: Calzetti law(Calzetti et al. 2000) ● Metallicity: Z/Zo = 0.005, 0.02, 0.2, 1.0 ● SFH:constant SF, exponentially decaying SF ● IMF:Salpeter IMF (Salpeter 1955) (Bruzual&Charlot 2003)

  24. 25/53 An Example of Fitting Results - We used 10 Bands for fitting. R, i’, z’, J, H, K, 3.6μm, 4.5μm,5.8μm, 8.0μm -Redshift is fixed at z = 3.14, or 3.69 hoge 1216Å 4000Å Ri'z' JHK 3.6-8.0μm ・Left fig.: SED of a K-detected LAE

  25. 26/53 An Example of Fitting Results - We used 10 Bands for fitting. R, i’, z’, J, H, K, 3.6μm, 4.5μm,5.8μm, 8.0μm -Redshift is fixed at z = 3.14, or 3.69 hoge 1216Å 4000Å Ri'z' JHK 3.6-8.0μm ・Left fig.: SEDand fitting result of a K-detected LAE

  26. 27/53 Table of contents Introduction Data SED Fitting Results and Discussion

  27. 28/53 Absolute Vmagvs. Stellar Mass □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05)

  28. 29/53 Absolute Vmagvs. Stellar Mass □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LBG: - all spectroscopically confirmed and detected in K-band. - distribute over about 2 orders of stellar mass.

  29. 30/53 Absolute Vmagvs. Stellar Mass ▲:LAE@z~3 (Gawiser+06) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LAE@z=3.1 (Gawiser+06) - stacked 18 objs - M* ~ 5 × 108 Mo

  30. 31/53 Absolute Vmagvs. Stellar Mass ▲:LAE@z~3 (Gawiser+06, Nilsson+07) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LAE@z=3.15(Nilsson+07) - stacked 23 objs - M* ~ 5 × 108 Mo

  31. 32/53 Absolute Vmagvs. Stellar Mass ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LAE@z=3.1(Lai+08) - IRAC-detected 18 objs - M* ~ 9 × 109 Mo - IRAC-undetected 76 objs - M* ~ 3 × 108 Mo

  32. 33/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・K-detected LAE: almost the same as LBG (~1010Mo)

  33. 34/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152

  34. 35/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152 ・ stellar mass correlates with absolute Vmag

  35. 36/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) Mstar/LV =const. ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152 ・ stellar mass correlates with absolute Vmag

  36. 32/47 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) Mstar/LV =const. ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152 ・ stellar mass correlates with absolute Vmag

  37. 38/53 Stellar Massvs. specific SFR □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr

  38. 39/53 Stellar Massvs. specific SFR □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LBG: - distribute over more than 2 orders of sSFR. ・DRG, SMG: - have higher M*, and lower sSFR.

  39. 40/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.1 (Gawiser+06) - stacked 18 objs - M* ~ 5 × 108 Mo - sSFR ~ 1 × 10-8 /yr

  40. 41/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06,07) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.1 (Gawiser+07) - stacked 52 objs - M* ~ 1 × 109 Mo - sSFR ~ 2 × 10-9 /yr

  41. 42/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06,07, Nilsson+07) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.15(Nilsson+07) - stacked 23 objs - M* ~ 5 × 108 Mo - sSFR ~ 1 × 10-9 /yr

  42. 43/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.1(Lai+08) - IRAC-undetected 76 objs - M* ~ 3 × 108 Mo - sSFR ~ 7 × 10-9 /yr - IRAC-detected 18 objs - M* ~ 9 × 109 Mo - sSFR ~ 7 × 10-10 /yr

  43. 44/53 Stellar Massvs. specific SFR △:LAE(Lai+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=5.7 (Lai+07) - 3 objs - M* ~ 2 × 1010 Mo - sSFR ~ 1 × 10-9 /yr

  44. 45/53 Stellar Massvs. specific SFR △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z~5 (Pirzkal+07) - 9 objs - M* ~ 7 × 107 Mo - sSFR ~ 1 × 10-7 /yr

  45. 46/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・K-detected LAE: - distribute in almost the same region as LBGs.

  46. 47/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr SFR=1Mo/yr 48 152 ・K-detected LAE: - distribute in almost the same region as LBGs. ・K-undetected LAE: - higher sSFR than other high-z galaxy pops.

  47. 48/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) -:cosmic sSFR@z~3(Hopkins+06) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr SFR=1Mo/yr 48 152 ・K-detected LAE: - distribute in almost the same region as LBGs. ・K-undetected LAE: - higher sSFR than other high-z galaxy pops. - similar or higher sSFR than cosmic sSFR at that time.

  48. 15/17 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) -:cosmic sSFR@z~3(Hopkins+06) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr This is our main results. And, … SFR=1Mo/yr 48 152 ・K-detected LAE: - distribute in almost the same region as LBGs. ・K-undetected LAE: - higher sSFR than other high-z galaxy pops. - similar or higher sSFR than cosmic sSFR at that time.

  49. 50/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr SFR=1Mo/yr 48 152 ・Red LAE??: - massive and very high SFR. - have very red SED.

More Related