590 likes | 752 Views
Oct. 6-10. 2008 “Understanding Lyman-alpha Emitters”, MPIA. Stellar Populations of z=3.1 and 3.7 Lyman-Alpha Emitters with K~23-27 from deep 0.5-8.0um photometry. Yoshiaki ONO ( Univ. Tokyo ) K. Shimasaku , M. Yoshida, S. Okamura (Univ. Tokyo) ,
E N D
Oct. 6-10. 2008 “Understanding Lyman-alpha Emitters”, MPIA Stellar Populations of z=3.1 and 3.7 Lyman-Alpha Emitters with K~23-27 from deep 0.5-8.0um photometry Yoshiaki ONO(Univ. Tokyo) K. Shimasaku, M. Yoshida, S. Okamura (Univ. Tokyo), M. Ouchi (OCIW), M. Akiyama (Tohoku Univ.), J. Dunlop (UBC), D. Farrah (Cornell Univ.), R. McLure (ROE)
3/53 Table of contents Introduction Data SED Fitting Results and Discussion
4/53 SED Fitting(from Opt. only) - For understanding stellar pops. of high-z LAE, NIR images are very important. 4000Å 1216Å hoge NB - Left figure: V -:M* ~ 3.6×1010 Mo -:M* ~ 1.5×109 Mo R i' z' B - only optical data can weakly constrain on its stellar pop.
5/53 Table of contents Introduction Data SED Fitting Results and Discussion
6/53 Wide & Deep 0.5–8.0 μm images 1.3° UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam
7/53 Wide & Deep 0.5–8.0 μm images 1.3° UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam H K [4.5] J [3.6] [5.8] [8.0] 3σ limitmag z’ i’ V R B wavelength[Å] 104 105
6/47 Wide & Deep 0.5 – 8.0 μm images 1216Å 4000Å NB V 1.3° B R i' z' UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam JHK (UKIRT/WFCAM) 3.6-8.0μm (Spitzer/IRAC) H K [4.5] J [3.6] [5.8] [8.0] 3σ limitmag z’ i’ V R B wavelength[Å] 104 105
6/47 Wide & Deep 0.5 – 8.0 μm images 1216Å 4000Å NB V 1.3° B R i' z' UKIDSS/UDS UKIRT/WFCAM SpUDS Spitzer/IRAC SXDS Subaru/Suprime-Cam JHK (UKIRT/WFCAM) 3.6-8.0μm (Spitzer/IRAC) H K [4.5] J [3.6] [5.8] [8.0] 3σ limitmag z’ i’ V R B wavelength[Å] 104 105
10/53 Near Infrared Data Quality - This figure summerise NIR data qualities used in early studies. ECDF-S, [3.6] (Gawiser+07, Lai+08) ECDF-S, K (Gawiser+06) GOODS-N, [3.6] (Lai+07) GOODS-S, [3.6] (Nilsson+07, Finkelstein+08) HUDF, [3.6] (Pirzkal+07)
11/53 Near Infrared Data Quality - This figure summerise NIR data qualities used in early studies. SpUDS, [3.6] (This Study) - SpUDS data used in our study is - almost equally deep - more than two times larger ECDF-S, [3.6] (Gawiser+07, Lai+08) ECDF-S, K (Gawiser+06) GOODS-N, [3.6] (Lai+07) GOODS-S, [3.6] (Nilsson+07, Finkelstein+08) HUDF, [3.6] (Pirzkal+07)
12/53 Near Infrared Data Quality - This figure summerise NIR data qualities used in early studies. SpUDS, [3.6] (This Study) - SpUDS data used in our study is - almost equally deep - more than two times larger ECDF-S, [3.6] (Gawiser+07, Lai+08) ECDF-S, K (Gawiser+06) GOODS-N, [3.6] (Lai+07) GOODS-S, [3.6] (Nilsson+07, Finkelstein+08) This data enable us to get better constraint on stellar pops. of LAEs. HUDF, [3.6] (Pirzkal+07)
13/53 LAE samples ● original samples (SXDS LAE; Ouchi+08)
14/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) ● K-undetected
15/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) analyzed individually ● K-undetected
16/53 A K-detected LAE NB R i' z' 20’’ JHK 3.6μm 4.5μm 5.8μm 8.0μm
17/53 A K-detected LAE NB R i' z' 20’’ JHK We can clearly see in K & [3.6] :-) 3.6μm 4.5μm 5.8μm 8.0μm
18/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) ● K-undetected stacking
A stacked LAE 19/53 R i' z' 20’’ JHK 3.6μm 4.5μm 5.8μm 8.0μm
A stacked LAE 20/53 R i' z' 20’’ JHK We can see in K & [3.6] :-) 3.6μm 4.5μm 5.8μm 8.0μm
21/53 LAE samples ● original samples (SXDS LAE; Ouchi+08) Photometry in K-band Divided at 3σ magnitude (~24ABmag) ● K-detected (>3σ) ● K-undetected stacking
LAE samples (K-band Images) 22/53 ● K-detected (>3σ) 20’’ ● K-undetected 48 (R<26.3) 152 (R≧26.3) 61
23/53 Table of contents Introduction Data SED Fitting Results and Discussion
24/53 SED Fitting • ■ Stellar Population Synthesis Model ■ Parameters ● Stellar Mass ● Age ● Dust Extinction: Calzetti law(Calzetti et al. 2000) ● Metallicity: Z/Zo = 0.005, 0.02, 0.2, 1.0 ● SFH:constant SF, exponentially decaying SF ● IMF:Salpeter IMF (Salpeter 1955) (Bruzual&Charlot 2003)
25/53 An Example of Fitting Results - We used 10 Bands for fitting. R, i’, z’, J, H, K, 3.6μm, 4.5μm,5.8μm, 8.0μm -Redshift is fixed at z = 3.14, or 3.69 hoge 1216Å 4000Å Ri'z' JHK 3.6-8.0μm ・Left fig.: SED of a K-detected LAE
26/53 An Example of Fitting Results - We used 10 Bands for fitting. R, i’, z’, J, H, K, 3.6μm, 4.5μm,5.8μm, 8.0μm -Redshift is fixed at z = 3.14, or 3.69 hoge 1216Å 4000Å Ri'z' JHK 3.6-8.0μm ・Left fig.: SEDand fitting result of a K-detected LAE
27/53 Table of contents Introduction Data SED Fitting Results and Discussion
28/53 Absolute Vmagvs. Stellar Mass □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05)
29/53 Absolute Vmagvs. Stellar Mass □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LBG: - all spectroscopically confirmed and detected in K-band. - distribute over about 2 orders of stellar mass.
30/53 Absolute Vmagvs. Stellar Mass ▲:LAE@z~3 (Gawiser+06) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LAE@z=3.1 (Gawiser+06) - stacked 18 objs - M* ~ 5 × 108 Mo
31/53 Absolute Vmagvs. Stellar Mass ▲:LAE@z~3 (Gawiser+06, Nilsson+07) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LAE@z=3.15(Nilsson+07) - stacked 23 objs - M* ~ 5 × 108 Mo
32/53 Absolute Vmagvs. Stellar Mass ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・LAE@z=3.1(Lai+08) - IRAC-detected 18 objs - M* ~ 9 × 109 Mo - IRAC-undetected 76 objs - M* ~ 3 × 108 Mo
33/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・K-detected LAE: almost the same as LBG (~1010Mo)
34/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152
35/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152 ・ stellar mass correlates with absolute Vmag
36/53 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) Mstar/LV =const. ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152 ・ stellar mass correlates with absolute Vmag
32/47 Absolute Vmagvs. Stellar Mass ◎:LAE (K-detected) ●:LAE (K-undetected) ▲:LAE@z~3 (Gawiser+06, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) Mstar/LV =const. ・K-detected LAE: almost the same as LBG (~1010Mo) 61 ・K-undetected LAE: much less massive than LBG (~108Mo-109Mo) 48 152 ・ stellar mass correlates with absolute Vmag
38/53 Stellar Massvs. specific SFR □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr
39/53 Stellar Massvs. specific SFR □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LBG: - distribute over more than 2 orders of sSFR. ・DRG, SMG: - have higher M*, and lower sSFR.
40/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.1 (Gawiser+06) - stacked 18 objs - M* ~ 5 × 108 Mo - sSFR ~ 1 × 10-8 /yr
41/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06,07) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.1 (Gawiser+07) - stacked 52 objs - M* ~ 1 × 109 Mo - sSFR ~ 2 × 10-9 /yr
42/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06,07, Nilsson+07) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.15(Nilsson+07) - stacked 23 objs - M* ~ 5 × 108 Mo - sSFR ~ 1 × 10-9 /yr
43/53 Stellar Massvs. specific SFR ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=3.1(Lai+08) - IRAC-undetected 76 objs - M* ~ 3 × 108 Mo - sSFR ~ 7 × 10-9 /yr - IRAC-detected 18 objs - M* ~ 9 × 109 Mo - sSFR ~ 7 × 10-10 /yr
44/53 Stellar Massvs. specific SFR △:LAE(Lai+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z=5.7 (Lai+07) - 3 objs - M* ~ 2 × 1010 Mo - sSFR ~ 1 × 10-9 /yr
45/53 Stellar Massvs. specific SFR △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・LAE@z~5 (Pirzkal+07) - 9 objs - M* ~ 7 × 107 Mo - sSFR ~ 1 × 10-7 /yr
46/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr SFR=103Mo/yr SFR=1Mo/yr ・K-detected LAE: - distribute in almost the same region as LBGs.
47/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr SFR=1Mo/yr 48 152 ・K-detected LAE: - distribute in almost the same region as LBGs. ・K-undetected LAE: - higher sSFR than other high-z galaxy pops.
48/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) -:cosmic sSFR@z~3(Hopkins+06) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr SFR=1Mo/yr 48 152 ・K-detected LAE: - distribute in almost the same region as LBGs. ・K-undetected LAE: - higher sSFR than other high-z galaxy pops. - similar or higher sSFR than cosmic sSFR at that time.
15/17 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) -:cosmic sSFR@z~3(Hopkins+06) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr This is our main results. And, … SFR=1Mo/yr 48 152 ・K-detected LAE: - distribute in almost the same region as LBGs. ・K-undetected LAE: - higher sSFR than other high-z galaxy pops. - similar or higher sSFR than cosmic sSFR at that time.
50/53 Stellar Massvs. specific SFR ◎:LAE@z~3, 4(K-detected) ●:LAE@z~3, 4 (K-undetected) △:LAE(Lai+07, Pirzkal+07) ▲:LAE (Gawiser+06,07, Nilsson+07, Lai+08) □:LBG@z~3 (K-detected) (Shapley+01, Papovich+01, Iwata+05) ×:DRG@z~2 (vanDokkum+04, Wuyts+07) *:SMG@z~2 (Chapman+05, Borys+05) SFR=10Mo/yr SFR=102Mo/yr 61 SFR=103Mo/yr SFR=1Mo/yr 48 152 ・Red LAE??: - massive and very high SFR. - have very red SED.