280 likes | 509 Views
GRB 多波長放射で切り開く暗黒の宇宙. GRBs for UNravelling the Dark Ages Mission. SKA. 井上進(京大理). 分子. TMT. ALMA. 金属. 再電離 (磁場). ダスト. SPICA. ASTRO-H. CTA. high-z GRB afterglows: expectations. z measurement from Ly break:. JANUS z~<13 GUNDAM z~<?. Subaru z~<20 TMT z~<40. 天文月報 102, 248 (2009).
E N D
GRB多波長放射で切り開く暗黒の宇宙 GRBs for UNravelling the Dark Ages Mission SKA 井上進(京大理) 分子 TMT ALMA 金属 再電離 (磁場) ダスト SPICA ASTRO-H CTA
high-z GRB afterglows: expectations z measurement from Ly break: JANUS z~<13 GUNDAM z~<? Subaru z~<20 TMT z~<40 天文月報 102, 248 (2009)
z~100-10 未知との遭遇 =metal/dust-free, H2+HD-cooling Pop 3 first star epoch assume: no metal/dust, B field, CR, turbulence, DM heating 1st HII region -> IGM reionization 1st SN -> 1st metal/dust (+CR+B) 1st BH -> 1st QSO =metal/dust-cooling Pop 2 1st sun -> 1st planet, life, human! 観測ほとんど皆無 (WMAPのみ) 1st gen.はわかったとされている 2nd gen.研究に移行 Yoshida, Omukai & Hernquist 08
deduced from GRB rate cosmic star formation rate from GRB rate Kistler+ 09 from HUDF JANUS/GUNDAMでよりhigh-zへ 直接観測と相補的
z>7 現在のフロンティア cosmic reionization epoch When? early? late? two-epoch? How? topology? What? Pop III? Pop II? mini-QSOs? dark matter decay? So what? suppression of dwarf galaxy formation Madau 07
reionization: IGM HI (+ HII) from Lyprofile z=6.295 McQuinn+ 08 Ly damping wing profile mean IGM HI + host galaxy HI + host HII 宇宙再電離 すばる、TMTで各成分を分離 よりhigh-zへ(WMAP, Planckと重なる時期)
g + g→ e+ + e- e.g. TeV + 1eV (IR) 100 GeV + 10 eV (UV) UV background from gamma-ray absorption e E high-z UV背景放射:ガンマ線吸収で識別 CTA(Fermiの後継)でz~20 GRBまで観測可能 SI+ 10 MN 404, 1938 Y. Inoue, SI+, in prep. gamma-ray opacity cosmic star formation rate
below Ly edge above Ly edge <13.6 eV >13.6 eV high-z UV background • does not ionize HI, weakly absorbed • reasonably uniform • important for absorption • ionizes HI, strongly absorbed • highly non-uniform • negligible for absorption • direct measure of UV emissivity • (indep. of escape fraction, • IGM clumping factor)
kinematics D’Elia+ 09 GRB 080319B z=0.937 GRB 050904 z=6.295 metal abundances Kawai+ 06, Totani+ 06 - multiple velocity components - variable line ratio (UV pumping) 母銀河の金属組成、運動学 よりhigh-zへ VLT/UVES res. ~4 km/s @4500A - 1.9km/s @9000A
GRB 090926A z=2.1071 ground D’Elia+ arXiv:1007.5357 metal abundances FeII VLT/X-shooter 0.3-2.5um R=10000 fine struc. X/H~3x10-3-10-2 SiII
Campana+ 06 星生成領域スケールの組成 遠方まで観測可能? ダストの影響なし がH, Heの情報なし X-ray absorption lines/edges <-> 光赤外と相補的 EDGE/XENIA E~0.2-2 keV E~3 eV Seff~1000 cm2 z=1 GRB z=7 GRB Piro+ 07 -> more from D. Hartmann
E=0.3-10 keV E=7 eV Seff=210 cm2 simulations by Bamba (see also Kawai, Yonetoku+, Kyoto conf.) ASTRO-H log NH=22 (Zsolar) Si log NH=23 S Fe Si z=1 bright aft@t=10ks 5e-10 erg/cm2/s integ. 10ks スザクとは違うのだよ、スザクとは!
E=0.3-10 keV E=7 eV Seff=210 cm2 see also Kawai, Yonetoku+, Kyoto conf. ASTRO-H log NH=22 (Zsolar) z=6 bright aft@t=10ks 4e-11 erg/cm2/s integ. 10ks Fe log NH=23 z measurement for dark bursts <- JANUS alert
E~0.2-2 keV E~3 eV Seff~1000 cm2 XENIA z=1 early aft@t=1ks 1e-9 erg/cm2/s integ. 1ks Mg Si log NH=22 (Zsolar) Ne S Fe O log NH=23 O
E~0.2-2 keV E~3 eV Seff~1000 cm2 XENIA log NH=22 (Zsolar) Si z=6 early aft@t=1ks 5e-10 erg/cm2/s integ. 1ks log NH=23 Fe
nucleosynthesis by low metal. SN/HN Kobayashi+ 06 metal abundances at low metallicity CNO: mass loss a-elements: pair-instability SN Ti, Zn: entropy in SN core -> explosion physics Mn: SN Ia contribution …
electronic absorption bands Prochaska+ 09 GRB 080607 z=3.063 molecules Keck/LRIS R=1000-4000 log NHI=22.70 log NH2=21.2 log NCO=16.5 分子=星形成の原材料 よりhigh-zへ?
Omukai+ 05 model collapsing zero/low-metal. protostellar clouds collapse of zero/low-metallicity star forming clouds T minimum -> fragmentation H2 dust H2+HD [Z/H]<-6: Mfrag~103MQPop 3 -3<[Z/H]<-5: Mfrag~0.1-100MQPop 2 [Z/H]crit=-5+-1
Ivanchik+ arXiv:1002.2107 Q 1232+082 z=2.3377 HD molecules VLT/UVES R=45000 N(HD)/N(H2) =7.1(+3.2 -2.2)x10-5
c.f. ambient H2 excited by GRB UV Draine 00, Draine & Hao 02 electronic absorption bands cold H2: 912-1110A (11.2-13.6 eV) vib. excited H2: 1110-1650 A (7.5-11.2 eV) primordial molecules similar for HD? N~1018-1020 cm-2 foreground massive star UV pumped H2 excited H2 massive star probe individual Pop III newly-born massive stars? GRB rdiss
SI, Omukai & Ciardi 2007 MNRAS 380, 1715 atomic/molecular absorption lines SKA • CO (low) probe physical conditions (different J) • HD • CO (high) • [OI] ALMA probe Pop III Pop III->II transition 回転順位線 より高柱密度領域 TMTと相補的 チャレンジングだろうがやってみよう
Perley+ 10 GRB 071025 z~5 dust • extinction feature • best fit with high-z • QSO extinc. curve • (Maiolino+ 04) ダスト: Pop II星形成への 遷移に本質的?TMTでよりhigh-zへ Pop III ダストの性質も?
(optical depth at fragmentation) absorption by first dust pair instability SN zero-metal SN II based on first dust models of Schneider+ 06 TMT (+SPICA)でPop 3 -> Pop 2 遷移を探れる?ダストの性質も?
B fields in Pop III star forming regions B~10-16-10-14 G on pc scales intergalactic/interstellar magnetic fields at high-z IGM B generation at high-z cosmic reionization fronts B~10-20-10-16 G B profile B nHI Xu+ 08 T ngas mean B vs z Gnedin+ 00 also Langer+ 05
GRB “pair echos” (delayed secondary emission) probe of intergalactic magnetic fields Plaga 95 (original idea) sensitive to very weak intergalactic magnetic fields g ~TeV B~10-20-10-16 G MeV e- IR CMB e+ B g ~GeV delay CMB g MeV
fix Eiso=1054 erg, z=10, Emax=10 TeV evolving echo flux B=10-15G CTA sens. assume low EBL (0.1x CF model) observationally challenging, but marginally detectable by CTA Takahashi, SI, Ichiki & Nakamura arXiv:1007.5363
- large r~<100 pc - low density n~0.1 cm-3 Pop 3 HII regions - flat profile Can be probed through afterglow evolution? Whalen+ 04 also Kitayama+ 04
まとめ GRBは宇宙で最も明るい多色光源 有効利用しよう 特にz>10 first star epochは未開拓 GRBで切り拓く 調べられる/られそうなこと: z 測定、星形成史、再電離史、 金属組成、運動学、分子、ダスト、磁場… 課題:Pop III GRB? その兆候は? 多波長のシナジー: SKA, ALMA, SPICA, ASTRO-H, CTA… JANUS and/or GUNDAMを上げよう