380 likes | 479 Views
mini-workshop Fundamental Physics ESO/Garching 18-19 Sep, 2014. С.А. Левшаков. Физико-технический институт им. А.Ф. Иоффе Санкт-Петербург. Chajnantor, 5000m above sea level. Atacama Large Millimeter Array (ALMA). 0.3-9.6 mm. E-ELT. European-Extremely Large Telescope.
E N D
mini-workshop Fundamental Physics ESO/Garching 18-19 Sep, 2014 С.А. Левшаков Физико-технический институт им. А.Ф. Иоффе Санкт-Петербург
Chajnantor, 5000m above sea level Atacama Large Millimeter Array (ALMA) 0.3-9.6 mm
E-ELT European-Extremely Large Telescope
Cerro Armazones, 3060 m June 2014
E-ELT adaptive, automatically correcting the atmospheric disturbances six sodium (Na) laser guide stars greater details than the HST by 15 times (!) THE SCHEDULE OF THE E-ELT Dome acceptance — March 2017 Main structure acceptance — March 2020 Technical first light — December 2021 Instruments 1 and 2 first light — June 2022 Start of observatory operations — October 2022.
OPEN QUESTIONS FOR THE E-ELT 1. EXOPLANETS: first direct images of Earth-like planets 2. FUNDAMENTAL PHYSICS: were the physical constants indeed constant over the history of the Universe? 3. BLACK HOLES: studies of the black hole at the center of the MW to reveal the nature of this object 4. STARS: when did the first stars form? 5. GALAXIES : individual stars in galaxies out to distances of ~ 10 Mpc 6. THE DARK AGES: can we observe the earliest epoch of the Universe?
Ryan Cooke (UCSC) Primordial deuterium in the era of the E-ELT Velocity Relative to z = 3.0672594 (km/s)
3 10-2 3 10-3 D/H = 2.5 10-5
Direct evidence for new physics ... can only be trusted once it is seen through independent probes consistency tests
Tz /T0 ~ (1+z)(αz /α0 )1/4 1 Δα ) ~ (1+z)(1 + α 4 but standard cosmology assumes adiabatic expansion and photon number conservation a robust prediction of standard cosmology T(z) = T0 (1+z) violated in many scenarios, including string theory etc. T(z) = T0 (1+z)1-β
Pasquier Noterdaeme (IAP) Constraints on TCMB(z) using UV absorption lines CII* E01 = 63.4 cm-1 CI* E02 = 43.4 cm-1 CI* E01 = 16.4 cm-1 CO E01~ kTCMB
CO excitation diagram based on T01, T02, and T12 long dashed line – expected TCMB = 9.315 ± 0.007 K at z = 2.4185 from the hot BB theory
Michael Murphy (Swinburne University of Technology) The future of varying α searches at ESO Long-range distortions!
Distortion correction + triple check Molaro et al. (MNRAS 2013): ESO Large Program
Sebastien Muller (Onsala Space Observatory) The z = 0.89 molecular absorber toward the lensed blazar PKS 1830-211 continuum map at 3 mm HST
Measurement of TCMB(z) expected 5.14 K
Constraints on Δμ/μ using molecules 20times stronger constraint on Δμ/μobtainedin the MW disk
S. A. Levshakov Local tests of spatial variation of me/mp line width ~0.2km/s ~ 0.001 km/s line position uncertainty ~ 0.005 km/s Δμ/μ < 2 10-8 (3σ) Effelsberg 100-m telescope
How to improve current Δμ/μ estimates? para- vs ortho-NH3 ! rotational transition of para-NH3 1215.2 GHz 644.4 GHz, i.e. in B9 ALMA band - 21 JK =11 z = 0.89
Herschel/HIFI observations ofpara-andortho-NH3 rotational transitions Different absorption patterns ! VLSR Persson et al. 2010 robust approach – to use para-NH3 only
Extragalactic NH3 absorption detected dusty star-forming galaxy (DSFG) HFLS3 z = 6.34 Riechers et al. 2013 if z > 1 then ground-based telescopes can be used to observe 1.2 THz line for σV~ 0.1 km/s, S/N ~ 30, and ΔV ~ 20 km/s (like PKS1830-211) Δμ/μ ~ 10-7 (based on NH3 only)
(for ALMA) HydroniumH3O+ Q -3.0 30-20 396 GHz o-H3O+ p-H3O+ 32-22 364 GHz -3.5 11-21 307 GHz +6.4 p-H3O+ Kozlov & Levshakov 2011 Kozlov, Porsev, Reimers 2011 p-H3O+ : ΔQ = Q307 – Q364 = 9.9 frequencies are in GHz 3 times ΔQammonia
H3O+ observations (star-forming regions, MW) G34.3+0.15 linewidth ΔV = 3.5 km/s also detected towards Orion-KL, W51M, W3 IRS5 CSO 10.4-m telescope (Phillips et al. 1992)
H3O+ observations (extragalactic) 364 GHz transition local starburst M82 van der Tak et al. 1992 Arp 220 if 364, 307 GHz line position uncertainties ~1 km/s JCMT 15-m telescope then Δμ/μ ~ 3 10-7
Conclusions High precision line position measurements ~ 0.01 km/s (Galactic molecular clouds) ~ 1 km/s (extragalactic molecular clouds) provide with ALMA facilities Δμ/μ ~ 3 10-9 (p-H3O+) Galactic ~ 10-8 (p-NH3 ) Δμ/μ ~ 3 10-7 (p-H3O+) extragalactic ~ 10-6 (p-NH3 )