120 likes | 554 Views
Nuclear Magnetic Resonance. Proton NMR Spectroscopy. Proton NMR. Proton NMR spectrum of the ester, C 7 H 14 O 2 , in banana oil: Note chemical shifts, integration data, multiplicity of signals 4.1 (t, 2H) 2.0 (s, 3H) 1.7 (m, 1H) 1.5 (q, 2H) 0.9 (d, 6H). 1.5 ppm.
E N D
Nuclear Magnetic Resonance Proton NMR Spectroscopy
Proton NMR • Proton NMR spectrum of the ester, C7H14O2, in banana oil: • Note chemical shifts, integration data, multiplicity of signals • 4.1 (t, 2H) • 2.0 (s, 3H) • 1.7 (m, 1H) • 1.5 (q, 2H) • 0.9 (d, 6H) 1.5 ppm
Characteristic Chemical Shifts • 0 ppm Si(CH3)4 Reference • 0 – 5 ppm H attached to tetrahedral (sp3) carbon • R-CH3 0.8 – 1.0 ppm • R2CH2 1.0 – 1.5 ppm • R3CH 1.5 – 1.8 ppm • RCH2-C(sp2) 1.8 – 2.8 ppm • RCH2-N 2.5 – 3.0 ppm • RCH2-O 3.3 – 3.8 ppm • RCH2-OC(=O)R 3.8 – 4.5 ppm • 5 – 10 ppm H attached to trigonal planar (sp2) carbon • Vinylic 5.0 – 7.0 ppm • Aromatic 6.5 – 8.5 ppm • Aldehyde 9.0 – 10.0 ppm
Spin-Spin Coupling • Each multiplet has one more peak than the sum of the hydrogen atoms on the adjacent carbon atom (N + 1 rule), with a pattern following statistical rules (Pascal’s Triangle). • The separation between each line in the multiplet is the coupling constant, J, in Hz • 5.76 (t, J = 6.0 Hz, 1H) • 3.96 (d, J = 6.0 Hz, 2H) 300 MHz
Effect of Operating Frequency • The coupling constant, J, is independent of the spectrometer operating frequency. • 4.12 (q, J = 7.1 Hz, 2H) • 2.04 (s, 3H) • 1.26 (d, J = 7.1 Hz, 3H) 90 MHz
Protons on Two Adjacent Carbon Atoms • 4.03 (t, 2H) • 2.53 (m, 1H) • 1.65 (m, 2H) • 1.17 (d, 6H) • 0.95 (t, 3H) 90 MHz
Non-equivalent Coupling • 7.50 – 7.10 (5H) • 6.59 (dd, JAB = 15 Hz, JAC = 6 Hz, 1H) • 5.74 (d, JAB = 15 Hz, 1H) • 5.23 (d, JAC = 6 Hz, 1H) • (Note: JBC < 1 Hz) 90 MHz
Protons on O and N • M+ = 75 (2% of bp) • C-13 NMR shifts:60.3, 39.8, 35.5 ppm