310 likes | 469 Views
1. Find the equation of the line through the point (-3,2) and perpendicular to the line x+y=7 . x+y+1=0 x-y+5=0 x+y+5=0 X+y-1=0. 2. Find the equation of the line through the points (1,-2) and (3,-2). y= -2 y= ( 7 / 3 )x+y – ( 1 / 3 ) y= -7 / 3 7x+3y-1=0. 3. -2 3 2 - 3. 4.
E N D
1. Find the equation of the line through the point (-3,2) and perpendicular to the line x+y=7 • x+y+1=0 • x-y+5=0 • x+y+5=0 • X+y-1=0
2. Find the equation of the line through the points (1,-2) and (3,-2). • y= -2 • y= (7/3)x+y – (1/3) • y= -7/3 • 7x+3y-1=0
3. • -2 • 3 • 2 • - 3
4. • -æ (- infinity) • æ (+ infinity) • 0 • ø
5. • 0 • 1/16 • Ø • -1/16
1. 3. 2. 4. 6. Find the derivative of • A • B • C • D
3. 1. 4. 2. 7. Find the derivative of • A • B • C • D
8. Find the derivative ofy=2x3 – x2 + 3x • 2x2 – x + 3 • 6x3 – 2x2 + 3 • 6x2 + 2x – 3 • 6x2 – 2x + 3
3. 1. 4. 2. 9. Find the 2nd derivative of • A • B • C • D
1. 3. 4. 2. 10. Using implicit differentiation solve • A • B • C • D
11. Use Rolle’s Thm to help find the critical values of f(x)=x2 – 3x +2 • f(1)=f(2); crit# {-5/2} • No crit #’s exist • f(1)≠f(2); crit# {-5/2} • f(1)=f(2); crit# {3/2}
12. Find the critical numbers forusing the mean value thm on the interval [ ½ , 2 ] • x= -1 • x= -1/x2 • x=1 • x=5/2
13. • Neg. infinity • Pos. infinity • 5 • 0
14. • Neg. infinity • Pos. infinity • 5 • 0
15. • Neg. infinity • Pos. infinity • 5 • 0
16. • Neg. infinity • Pos. infinity • 5 • 0
3. 1. 4. 2. 17. Use the shell method to find the volume of the solid generated by revolving the given region about the y-axis. Graph is shown below. y=1-x, y=0; y-int (0,1), x-int (1,0) • A • B • C • D
18. Find the area of the given region. f(x)=x2; g(x)=x3 use your calculator to find the intersections for this graph. • 1/3 • 1/2 • 1/6 • 1/12
19. Find the derivative of y=xex - ex • xex • xex – 1 • -ex • -xex
1. 3. 2. 4. 20. Find the derivative of • A • B • C • D
21. • ½ eu – x • ½ e2x – x + c • 2e2x – x • 2xe2x – 1 + c
3. 1. 2. 4. 22. • A • B • C • D
1. 3. 2. 4. 23. • A • B • C • D
1. 3. 2. 4. 24. Differentiate in simplest form • A • B • C • D
3. 1. 2. 4. 25. Find the volume of the solid formed by revolving the given region about the x-axis, using the Disc Method. Use your calculator to find the points of intersection. • A • B • C • D
26. Evaluate • 40 • 420 • 400 • 4200
27. Find 2 positive numbers that satisfy the given requirement. The product is 192 and the sum of the first plus 3 times the second is the min. • A=24; B=8 • A= -192; B=1 • A=192; B=1 • Not enough information
3. 1. 4. 2. 28. Evaluate • A • B • C • D
3. 1. 2. 4. 29. Evaluate • A • B • C • D
30. Evaluate • 3 • -3 • -1/3 • 1/3
31. Evaluate • 21 • 6 • 15 • 27