1 / 39

Migration Deconvolution of 3-D Seismic Data

Migration Deconvolution of 3-D Seismic Data. Jianxing Hu (University of Utah) Paul Valasek (Phillips Petroleum Company). Outline. Problem Solution Numerical tests Conclusions. Problems. Poor Resolution Amplitude Distortion. Migration noise Recording footprint. 0km. 5km. 10km.

rdu
Download Presentation

Migration Deconvolution of 3-D Seismic Data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Migration Deconvolution of 3-D Seismic Data Jianxing Hu (University of Utah) Paul Valasek (Phillips Petroleum Company)

  2. Outline • Problem • Solution • Numerical tests • Conclusions

  3. Problems • Poor Resolution • Amplitude Distortion • Migration noise • Recording footprint 0km 5km 10km 15km 0km 4km Kirchhoff Migration Image

  4. Modeling and Migration Forward Modeling: Model Space Green’s Function Reflectivity Wavelet Seismic data Migration: Data Space Migrated Image Seismic Data

  5. Relation of Migrated Image and Reflectivity Distribution Model Space Where: Data Space Denote as the migration Green’s Function

  6. Reflectivity Modulated by Migration Green’s Function Model Space

  7. Outline • Problem • Solution • Numerical tests • Conclusions

  8. Solution Get rid of the influence of migration green’s function from the migrated image Method: • Migration Deconvolution

  9. Migration Deconvolution Assumption: Migration Green’s function lateral shift invariant Model Space Model Space --- reference position of migration Green’s function

  10. Outline • Problem • Solution • Numerical tests • Conclusions

  11. Numerical Tests • 2-D SEG/EAGE overthrust model • 3-D poststack Kirchhoff migration of French model data set • 3-D poststack reverse time migration of a gulf of Mexico data set • 3-D prestack Kirchhoff migration of • a North Sea data set

  12. 0km 5km 10km 15km 0 6000 1500 Velocity (m/sec) Depth (m) 3000 2500 4500 Velocity Model

  13. 0 km 0 km 4 km 4 km • 0 km Comparison of KM and MD • 15 km • Poststack Migration Image 0 km 15 km • Deconvolved Migration Image

  14. Comparison of KM and MD 0 km 4 km 0 km 15 km • Poststack Migration Image of Half Sampled Data • 0 km • 15 km 0 km 4 km • Deconvolved Migration Image

  15. 0 km • 20 km 0 km 4 km • 0 km 20 km 0 km 4 km Comparison of KM and MD • Prestack Migration Image • Deconvolved Migration Image

  16. Numerical Tests • 2-D SEG/EAGE overthrust model • 3-D poststack Kirchhoff migration of French model data set • 3-D poststack reverse time migration of a gulf of Mexico data set • 3-D prestack Kirchhoff migration of • a North Sea data set

  17. French Model X (km) 0 4 8 0 • 10,000 ft/sec 1 10,000 ft/sec Tested Area • 2 Depth (km) 19,000 ft/sec 13,000 ft/sec 4 19,000 ft/sec 5

  18. 1 • 3 • 3 • 5 • 2 • 2 • 3 • 5 • 2 • 2 • 4 • 4 • Depth (km) • Depth (km) • 4 • 4 Comparison of KM and MD Results X (km) X (km) Inline Section Y (km) Y (km) • 1 • 3 Crossline Section • KM • MD • MD

  19. 3 3 4 4 5 5 0.3 1.3 2.3 3.3 Comparison of KM and MD Results X (km) • 0 • 8 0 1 10,000 ft/sec Depth (km) • Test Area 2570 m 13,000 ft/sec 19,000 ft/sec 5 • Sharper X (km) X (km) 0.3 1.3 Y (km) 2.3 Sharper 3.3 • KM • MD

  20. Numerical Tests • 2-D SEG/EAGE overthrust model • 3-D poststack Kirchhoff migration of French model data set • 3-D poststack reverse time migration of a gulf of Mexico data set • 3-D prestack Kirchhoff migration of • a North Sea data set

  21. Poststack RTM Image of a Gulf of Mexico Data Set • X(km) 6 9 • 0 • 3 • 12 • 1 • 2 • Depth(km) • 3 • 4

  22. Velocity Model X (km) 0 6 12 0 1.6km/s 1 3km/s 2 3 Depth (km) 4.45km/s 4 5 6

  23. 5 • 1 Comparison of RTM and MD Images RTM MD • 6 • 6 • 5 • 1 • 2 • 2 • Depth (km) • Depth (km) • 3 • 3 • X(km) • X(km)

  24. Comparison of RTM and MD Images RTM MD • 7.0 • 7.0 • 7.4 • 7.4 • 1 • 1 • 2 • 2 • Depth (km) • Depth (km) • 3 • 3 • Y(km) • Y(km)

  25. X (km) • X (km) • X (km) • X (km) • 6.0 • 6.0 • 6.0 • 6.0 5.0 5.0 5.0 5.0 • 7.0 • 7.0 • 7.0 • 7.0 • Y (km) • Y (km) • Y (km) • Y (km) • 7.5 • 7.5 • 7.5 • 7.5 Comparison of Depth Slices • RTM Image • MD Image • RTM Image • MD Image

  26. X (km) • X (km) • X (km) • X (km) • 6.0 • 6.0 • 6.0 • 6.0 5.0 5.0 5.0 5.0 • 7.0 • 7.0 • 7.0 • 7.0 • Y (km) • Y (km) • Y (km) • Y (km) • 7.5 • 7.5 • 7.5 • 7.5 Comparison of Depth Slices • RTM Image • MD Image • RTM Image • MD Image

  27. Numerical Tests • 2-D SEG/EAGE overthrust model • 3-D poststack Kirchhoff migration of French model data set • 3-D poststack reverse time migration of a gulf of Mexico data set • 3-D prestack Kirchhoff migration of • a North Sea data set

  28. 4 • 4 • 6 • 6 • 8 • 8 • 10 • 10 • 1 • 1 • Depth (km) • Depth (km) • 4 • 4 Comparison of PSKM and MD Images • X (km) • Prestack Kirchhoff Migration Image of • a North Sea Data Set • X (km) • MD Image

  29. 6 • 8 • 1 • Depth (km) • 4 Comparison of PSKM and MD Images KM MD • 6 8 • 1 • Depth (km) • 4 • Y(km) • Y (km)

  30. X (km) • X (km) • X (km) • X (km) • 10 • 10 • 10 • 10 • 8 • 8 • 8 • 8 • 6 • 6 • 6 • 6 4 4 4 4 • 6 • 6 • 6 • 6 • Y (km) • Y (km) • Y (km) • Y (km) • 8 • 8 • 8 • 8 • Kirchhoff Image • MD Image Comparison of Depth Slices

  31. X (km) • X (km) • X (km) • X (km) • 10 • 10 • 10 • 10 • 8 • 8 • 8 • 8 • 6 • 6 • 6 • 6 4 4 4 4 • 6 • 6 • 6 • 6 • Y (km) • Y (km) • Y (km) • Y (km) • 8 • 8 • 8 • 8 • Kirchhoff Image • MD Image Comparison of Depth Slices

  32. 4 • 4 • 6 • 6 • 8 • 8 • 10 • 10 • 1 • 1 • Depth (km) • Depth (km) • 4 • 4 Comparison of Decon and MD Images • X (km) • MD Image • X (km) • AGC + Harmonize + FXY decon image of the raw migration data

  33. Depth (km) • 4 Comparison of Decon and MD Images AGC + Harmonize + FXY decon MD • 6 • 8 • 6 8 • 1 • 1 • Depth (km) • 4 • Y(km) • Y (km)

  34. X (km) • X (km) • X (km) • X (km) • 10 • 10 • 10 • 10 • 8 • 8 • 8 • 8 • 6 • 6 • 6 • 6 4 4 4 4 • 6 • 6 • 6 • 6 • Y (km) • Y (km) • Y (km) • Y (km) • 8 • 8 • 8 • 8 • Harmon + FXY Decon Image • MD Image Comparison of Depth Slices

  35. X (km) • X (km) • X (km) • X (km) • 10 • 10 • 10 • 10 • 8 • 8 • 8 • 8 • 6 • 6 • 6 • 6 4 4 4 4 • 6 • 6 • 6 • 6 • Y (km) • Y (km) • Y (km) • Y (km) • 8 • 8 • 8 • 8 Comparison of Depth Slices • Harmon + FXY Decon Image • MD Image

  36. Results Comparison • X(km) • 0 • X(km) • 1 • 0 • 1 • 0 • 0 • Y(km) • Y(km) • 1 • 1 • 1 • Kirchhoff Migration Image • MD Image Deconvolved Migration Image MD Migration Decon Model Migration Image Conventional Deconvolution

  37. Outline • Motivation • Solution • Numerical tests • Conclusions

  38. Conclusions • Works on 2D and 3D migrated data, improves resolution, mitigates migration artifacts • Suitable for Kirchhoff and RTM migration images • Post-migration processing

  39. Acknowledgement • Thank Phillips petroleum company and other UTAM sponsors • Thank Phillips petroleum company, Veritas marine surveys, Agip (UK) ltd., BG EP ltd., Centrica plc., Conoco UK ltd., Fina exploration ltd., and Phillips (UK) ltd., for granting permission to present the application of MD to gulf of Mexico and North Sea data set

More Related