80 likes | 261 Views
Law of Cosines. By Amber Wolfe and Savannah Guenther. Introduction. Equation. Use the equation below for non-right triangles given (side-angle-side) or (side-side-side) to solve for either an angle or a side. Example 1. Solving a triangle (SAS) Given ABC , a=11, b=5, C=20
E N D
Law of Cosines By Amber Wolfe and Savannah Guenther
Equation • Use the equation below for non-right triangles given (side-angle-side) or (side-side-side) to solve for either an angle or a side.
Example 1 • Solving a triangle (SAS)Given ABC, a=11, b=5, C=20 c2 =a2 + b2 – 2ab cosC = 112 + 52 -2(11)(5) cos(20) = 42.634...c = √42.634... = 6.5 A 5 20 C B 11
A Example 2 7 5 Solving a triangle (SSS)Given ABC, a=9, b=7, c=5 a2 =b2 + c2 – 2bc cos A 92 + 72 -2(7)(5) cos A 70 cos A = -7 A = cos-1 (-0.1) = 95.7 b2 =a2 + c2 – 2ac cos B 72 = 92 + 52 – 2(9)(5) cos B 90 cos B = 57 B = cos-1 (57/90) = 50.7 C B 9 Then C = 180 – 95.7 – 50.7 = 33.6
References • www.mathbook.com • www.dudelol.com • www.paworldmathclass.web.com • Precalculus math book • Test #4 Practice Quiz