880 likes | 1.09k Views
Methods for 3D Shape Matching and Retrieval. Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group. Our Aim #1. Given an example:. Find the most similar object(s) in a database. …. ,. ,. ,. Motivation. Lots of 3D archives: WWW Proprietary databases ...
E N D
Methods for 3D Shape Matching and Retrieval Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group
Our Aim #1 • Given an example: • Find the most similar object(s) in a database … , , , Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Motivation • Lots of 3D archives: • WWW • Proprietary databases • ... • Search engines for data: • Text, 2D images, music (MIDI), … • Emerging since 1998 for 3D Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Our Aim #2 • Direct matching • Alignment • Establishing correspondences Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Motivation • Partial matching/retrieval Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Motivation • Partial matching/retrieval • Statistical shape analysis • Morphing • Texture transfer • Registration Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
General Problem Abstract representation facilitating: • identification of salient features of 3D objects • description of features • comparison (matching) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Overview • Matching for 3D Shape Retrieval • Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Matching for 3D Shape Retrieval Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
General Problem • We need a Descriptor →D( ) D : Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
General Problem We need a Distance Measure : = d( , ) d( , ) D( ) D( ) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
General Problem • We need a Distance Measure : • Close to (application driven) notion of resemblance • Computationally cheap and robust d( , ) d( , ) d( , ) ≤ ≤ Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
x1 D( ) ≡ xn 3D Zernike Descriptors • Feature vectors Xi: 3D Zernike Descriptors [Canterakis ’99, Novotni & Klein ’03, ’04] Distance Measure: Euclidean Distance Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Retrieval performance [Novotni & Klein ‘03 ’04] • Slightly better than [Funkhouser et al. ’02] • Object class dependent performance! • Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Faces Airplanes Chairs Importance Coeff No. (Frequency) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors • Relevance feedback: • User selects relevant / irrelevant items • Distance measure is tuned • Learning Machines: • SVM (Support vector machines) [Vapnik ‘95] • One class SVM [Schölkopf et al. ’99] • (K)BDA ((Kernel) Biased Discriminant Analysis) [Zhou et al. ‘01] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation • Idea [Novotni & Klein 2001]: • Definition of „geometric“ similarity in terms of a geometric distance • Intuitive, simple, robust. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation Database objects example Normalized volumetric error 0.00 6.78 8.85 30.29 38.09 67.53 Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation • Classification by user set threshold Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation • Measures deformation magnitude Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Ideally: dense mapping ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Ideally: dense mapping • Deformation by mapping semantics [D’Arcy Thompson 1917: On Growth and Form] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Ideally: dense mapping • Easier: mapping salient points • Curvature extremes • Corners (Harris points in 2D) • Etc… • Scale space extremes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Ideally: dense mapping • Easier: mapping salient points • Curvature extremes • Corners (Harris points in 2D) • Etc… • Scale space extremes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Scale Space extremes [Lindeberg ‘94] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching We have: • Salient points • Spatial position • Size of local blobs How to match??? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Criteria for correspondences: Similar • Local geometries • Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Criteria for correspondences: Similar • Local geometries • Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Local description Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching • Local description Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Assumption: Similar local descriptors Similar local geometries Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Criteria for correspondences: Similar • Local geometries • Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Similar constellations of points • Smooth mappings leave constellations consistent • Idea • Constellations are consistent if mapping is smooth Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Similar constellations of points • Idea: • Constellations are consistent if mapping is smooth • Thin Plate Spline interpolation [Brookstein ’89] minimize: Total curvature Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching minimize: Minimizer (Thin Plate Spline interpolator): Affine part Nonlinear deformation Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching minimize: Minimizer (Thin Plate Spline interpolator): 2D Thin Plate Spline Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching minimize: Minimizer (Thin Plate Spline interpolator): Can be computed by a (N+4)x(N+4) matrix inversion Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Find (sub)sets of correspondences: • Small local descriptor distances • Small deformation energy Hierarchical pruning and clustering • Using: • Local descriptors • Geometrical constellation consistency Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group