1 / 16

CHE/ME 109 Heat Transfer in Electronics

CHE/ME 109 Heat Transfer in Electronics. LECTURE 4 – HEAT TRANSFER MODELS. HEAT TRANSFER MODEL PARAMETERS. MODELS ARE BASED ON FOUR SETS OF PARAMETERS TIME VARIABLES GEOMETRY SYSTEM PROPERTIES HEAT GENERATION. TIME VARIABLES. STEADY-STATE - WHERE CONDITIONS STAY CONSTANT WITH TIME

reidar
Download Presentation

CHE/ME 109 Heat Transfer in Electronics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHE/ME 109 Heat Transfer in Electronics LECTURE 4 – HEAT TRANSFER MODELS

  2. HEAT TRANSFER MODEL PARAMETERS • MODELS ARE BASED ON FOUR SETS OF PARAMETERS • TIME VARIABLES • GEOMETRY • SYSTEM PROPERTIES • HEAT GENERATION

  3. TIME VARIABLES • STEADY-STATE - WHERE CONDITIONS STAY CONSTANT WITH TIME • TRANSIENT - WHERE CONDITIONS ARE CHANGING IN TIME http://ccrma-www.stanford.edu/~jos/fp/img609.png

  4. GEOMETRY • THE COORDINATE SYSTEM FOR THE MODELS IS NORMALLY SELECTED BASED ON THE SHAPE OF THE SYSTEM. • PRIMARY MODELS ARE RECTANGULAR, CYLINDRICAL AND SPHERICAL- BUT THESE CAN BE USED TOGETHER FOR SOME SYSTEMS • HEAT TRANSFER DIMENSIONS • HEAT TRANSFER IS A THREE DIMENSIONAL PROCESS • SOME CONDITIONS ALLOW SIMPLIFICATION TO ONE AND TWO DIMENSIONAL SYSTEMS

  5. SYSTEM PROPERTIES • ISOTROPIC SYSTEMS HAVE UNIFORM PROPERTIES IN ALL DIMENSIONS • ANISOTROPIC MATERIALS MAY HAVE VARIATION IN PROPERTIES WHICH ENHANCE OR DIMINISH HEAT TRANSFER IN A SPECIFIC DIRECTION http://www.feppd.org/ICB-Dent/campus/biomechanics_in_dentistry/ldv_data/img/bone_17.jpg

  6. HEAT GENERATION • GENERATION OF HEAT IN A SYSTEM RESULTS IN AN “INTERNAL” SOURCE WHICH MUST BE CONSIDERED IN THE MODEL • GENERATION CAN BE A POINT OR UNIFORM VOLUMETRIC PHENOMENON • TYPICAL EXAMPLES INCLUDE: • RESISTANCE HEATING WHICH OCCURS IN POWER CABLES AND HEATERS • REACTION SYSTEMS, CHEMICAL AND NUCLEAR • IN SOME CASES, THE SYSTEM MAY ALSO CONSUME HEAT, SUCH AS IN AN ENDOTHERMIC REACTION IN A COLD PACK

  7. SPECIFIC MODELS • RECTANGULAR MODELS CAN BE DEVELOPED AS SHOWN IN THE FOLLOWING FIGURES • THE HEAT TRANSFER ENTERS AND EXITS IN x, y, AND z PLANES THROUGH THE CONTROL VOLUME • DIMENSIONS OF THE VOLUME ARE Δx, Δy AND Δz • THE OVERALL MODEL FOR THE SYSTEM INCLUDES GENERATION TERMS AND ALLOWS FOR CHANGES IN THE CONTROL VOLUME WITH TIME

  8. DIFFERENTIAL MODEL • THIS SYSTEM CAN BE REDUCED TO DIFFERENTIAL DISTANCE AND TIME, USING THE EXPRESSIONS FOR CONDUCTION HEAT TRANSFER AND HEAT CAPACITY TO YIELD:

  9. DIFFERENTIAL MODEL FOR SPECIFIC SYSTEMS • STEADY STATE: • STEADY STATE WITH NO GENERATION: • TRANSIENT WITH NO GENERATION: • TWO DIMENSIONAL HEAT TRANSFER (TWO OPPOSITE SIDES ARE INSULATED). • .ONE DIMENSIONAL HEAT TRANSFER (FOUR SIDES ARE INSULATED- OPPOSITE PAIRS)

  10. OTHER VARIATIONS ON THE EQUATION FOR SPECIFIC CONDITIONS • SIMILAR MODIFICATIONS CAN BE APPLIED TO THE ONE AND TWO DIMENSIONAL EQUATIONS FOR: • STEADY STATE • AND NO-GENERATION CONDITIONS http://www.emeraldinsight.com/fig/1340120602047.png

  11. OTHER GEOMETRIES • CYLINDRICAL USE A CONTROL VOLUME BASED ON ONE DIMENSIONAL (RADIAL) HEAT TRANSFER FOR THE CONDITIONS: • THE ENDS ARE INSULATED OR THE AREA AT THE ENDS IS NOT SIGNIFICANT RELATIVE TO THE SIDES OF THE CYLINDER • THE HEAT TRANSFER IS UNIFORM IN ALL DIRECTIONS AROUND THE AXIS. • THE CONTROL VOLUME FOR THE ANALYSIS IS A CYLINDRICAL PIPE AS SHOWN IN FIGURE 2-15 • RESULTING DIFFERENTIAL FORMS OF THE MODEL EQUATIONS ARE SHOWN AS (2-25) THROUGH (2-28)

  12. SPHERICAL SYSTEMS • MODELED USING A VOLUME ELEMENT BASED ON A HOLLOW BALL OF WALL THICKNESS Δr (SEE FIGURE 2-17) • FOR UNIFORM COMPONENT PROPERTIES, THE MODEL BECOMES ONE DIMENSIONAL FOR RADIAL HEAT TRANSFER. • THE RESULTING EQUATIONS ARE (2-30) - (2-34) IN THE TEXT

  13. GENERALIZED EQUATION • GENERAL ONE-DIMENSIONAL HEAT TRANSFER EQUATION IS • WHERE THE VALUE OF n IS • 0 FOR RECTANGULAR COORDINATES • 1 FOR CYLINDRICAL COORDINATES • 2 FOR SPHERICAL COORDINATES

  14. GENERAL RESISTANCE METHOD • CONSIDER A COMPOSITE SYSTEM • CONVECTION ON INSIDE AND OUTSIDE SURFACES • STEADY-STATE CONDITIONS • EQUATION FOR Q http://www.owlnet.rice.edu/~chbe402/ed1projects/proj99/dsmith/index.htm

  15. COMPOSITE TRANSFER EQUATION

  16. OVERALL RESISTANCE VERSION

More Related