300 likes | 310 Views
Understand the principles of Classical and Operant Conditioning, from Pavlov's experiment to the Rescorla-Wagner model. Dive into associative and cognitive learning processes, exploring theories and experiments in behaviorism.
E N D
Learning • What is Learning? • Relatively permanent change in behavior that results from experience (behaviorist tradition) • Can there be learning that does not result in a change in behavior? • Types of Learning • Associative Learning (simple, passive, external) • Cognitive Learning (complex, strategic, internal)
Associative Learning • Classical Conditioning – associating two stimuli • Operant Conditioning – associating a behavior and its consequences
Classical Conditioning • Pavlov’s serendipitous discovery • Associating 2 stimuli • The first stimulus is “neutral” – does not produce any response • The second stimulus produces a reflex (unconditioned) response • After the 2 stimuli become associated, both will produce the unconditioned response
Pavlovian Classical Conditioning Before Conditioning UCS UCR Neutral Stimulus No Response During Conditioning CS UCS UCR After Conditioning CS CR
Pavlovian Classical Conditioning Before Conditioning Food (UCS) Salivation (UCR) Tone (NS) No Salivation During Conditioning Tone (CS) Food (UCS) Salivation (UCR) After Conditioning Tone (CS) Salivation (CR)
Classical Conditioning to Cure Bed-Wetting Before Conditioning Alarm (UCS) Wake up (UCR) Full Bladder (NS) No waking up During Conditioning Full B. (CS) Alarm (UCS) Wake up (UCR) After Conditioning Full Bladder (CS) Wake up (CR)
Further Concepts that Apply to Classical Conditioning • Generalization: CR is given to stimuli that are similar to the CS • Discrimination: CR not given to stimuli that are dissimilar to the CS • Extinction: If the CS is presented repeatedly without being followed by the UCS, the CR will diminish or cease • Spontaneous Recovery: Following extinction, the CR will spontaneously re-appear after a delay
Classical Conditioning as Simple Associative Learning • Temporal Contiguity was thought to be sufficient – the CS simply needs to occur immediately prior to the UCS for conditioning to take place • Equipotentiality: any two stimuli could be associated through conditioning
Equipotentiality Falsified • Some stimuli are easier to associate than others • Taste Aversion – only foods become associated with illness, not other stimuli • Garcia & Koelling, 1966 – the “Sweet, bright, noisy water study”
Garcia & Koelling, 1966 • CS = flavor, light, and click (sweet, bright, noisy water) • UCS: 2 conditions • Group 1: UCS = illness (from X-rays) • Group 2: UCS = shock • CR = avoidance (not drinking the water) • After conditioning, tested which features of the CS were associated with each UCS
Garcia & Koelling: Results • Both Groups: CS (sweet, bright, noisy) CR (avoidance) • Group 1(UCS = shock) • Sweet water No avoidance • Bright noisy water Avoidance • Group 2 (UCS = illness) • Sweet water Avoidance • Bright noisy water No avoidance
Temporal Contiguity is Not Enough • Contingency: The CS must reliably predict the occurrence of the UCS (Rescorla, 1966) • Informativeness: The CS must provide new information for predicting the occurrence of the UCS
Contingency (Rescorla, 1966) • UCS = shock (S), UCR = fear • CS = tone (T) • Training: two conditions • Random Condition: S TS S T TS S T TS • Contingent Condition: TS TSTS • Results: Rats learned to fear the tone only in the contingent condition, when the tone predicted the shock
Informativeness: Blocking • If an organism has already learned that one CS predicts the UCS, that will block the conditioning of a new CS if the new CS does not provide any additional information • Example: Fear conditioning of a tone blocks conditioning of a light
Rescorla-Wagner Model (1972) • A mathematical model of the “strength of association” produced in classical conditioning • Can account for all of the classical conditioning phenomena we have just seen • Uses just one single equation!
Rescorla-Wagner Model ΔVn = c (Vmax – Vn) V= the strength of association between a CS and a US ΔVn= the change in the strength of association between the CS and US on a given trial Vmax= the asymptote for CS-US association strength after learning c = rate of conditioning (how fast the association is learned)
Cognitive Interpretation of Classical Conditioning • Classical Conditioning is more than simple association • The concept of information could explain contingency and blocking • They are not just associating stimuli, they are seeking information from one stimulus to predict the occurrence of the other
Operant Conditioning • The law of effect: behaviors that are followed by good things happen more often • Association: Things that occur together become associated
Basics of Operant Conditioning • Operant – freely emitted behavior operating on the organism’s environment; NOT a reflex response • Reinforcement Contingencies – the consequences that follow a behavior • Reinforcement: increases the frequency of the behavior • Punishment: decreases frequency of behavior
Reinforcement & Punishment • Positive reinforcement • Negative reinforcement • Positive punishment • Negative punishment
Reinforcement Schedules • Continuous vs. Partial • Fixed vs. Variable • Interval vs. Ratio • Examples • Fixed ratio: vending machine • Variable ratio: slot machine • Fixed interval: checking mailbox • Variable interval: checking email
Explaining Complex Learning with Operant Conditioning • Secondary reinforcers - association • Shaping – simple learning in small increments • Chaining – small increments plus secondary reinforcement • Language – association and reinforcement (Skinner’s Verbal Behavior, 1957)
Learning that Could not be Explained by Behaviorism • Latent Learning – learning without reinforcement (Tolman & Honzig, 1930) • Observational Learning – learning without behaving or being reinforced (Bandura, 1977) • Overjustification – when rewards decrease the frequency of behavior (but see Eisenberger & Cameron, 1996 for an opposing view) • Language Acquisition – Chomsky’s critique
Latent Learning Tolman & Honzig, 1930 Group 1: never a food reward Group 2: always a food reward Group 3: food reward after 10 days
Behaviorism Falls Short: Language • Chomsky: “Action in the past” as a property of stimuli is sneaking mental representations in the back door • Association is insufficient to explain language learning: The evidence points to learning RULES • Evidence: Over-regularization (“goed”) • Conclusion: Mere associations between words can not explain language; any adequate theory of meaning must hypothesize internal representations of the rules of language (grammar)
So What was Behaviorism Lacking? • Symbolic Representation – we have internal (mental) representations for things in the external world • Structure – we learn sets of rules for combining symbols (e. g., grammar), not just associations between pairs of symbols
Associative Learning Rises Again? • LSA – Latent Semantic Analysis • A theory of meaning, and a method for computer analysis of the meanings of texts • The meaning of a word = all of the words that co-occur with it in a sample of written text (roughly) • Meaning is just a function of associations of words, not structure (syntax) • How much of language meaning can LSA account for? A surprisingly large amount.