460 likes | 560 Views
Recent and future experiments for the determination of V ud. Hartmut Abele International WE Heraeus Summer School on Flavour Physics and CP Violation Technische Universität Dresden, 29 August - 7 September 2005. Low energy particle physics. Talk about the first particle flavour:
E N D
Recent and future experiments for the determination of Vud Hartmut Abele International WE Heraeus Summer School on Flavour Physics and CP Violation Technische Universität Dresden, 29 August - 7 September 2005
Low energy particle physics • Talk about the firstparticle flavour: • First generation´s particles make up our contemporary universe • They are stable • They have zero energy • They contribute to particle physics mainly because of their extremely high precision High energy particle physics Tera-eV Neutron pico-eV
MPL = 1/128 GUT = 1/137 quantum gravity MnPL
Possible CP violation in neutron physics and Two motivations to measure EDMs EDM is effectively zero in standard model but big enough to measure in non-standard models direct test of physics beyond the standard model EDM violates T symmetry Deeply connected to CP violation and the matter-antimatter asymmetry of the universe
A bit of history neutron: Electro- 10-20 10-20 magnetic electron: 10-22 10-22 10-24 10-24 Experimental Limit on d (e.cm) 10-26 Multi SUSY Higgs f ~ 1 10-28 f ~ a/p Left-Right 10-30 10-30 1960 1970 1980 1990 2000 10-32 10-34 Highest Precision: Energy: E ~ 10-22 eV (n-El.Dipole Moment: E/ħ ~ 1/month) Standard Model 10-36 10-38
Sensitivity of neutron experiments: Energy: E ~0.000 000 000 000 000 000 000 1eV = 10-22 eV Momentum: p/p ~ 10-11 (n-charge: angular resolution of 1Å on 10m) Finestructure constant / ~ 10-8 (measurement of:nvn) Lifetime / ~ 10-3
Neutron moderation Neutrons: • hot • thermal • cold • ultracold
ILL Neutron Guide Hall Gravitation and Bound Quantum States Particle Physics: SM Tests 3D Neutron Tomography
OutlineMeasurement of Cosine Cabibbo Vud • Situation 2004 • Ways to extract Vud • Vud from neutron beta-decay: Inputs: 1. Correlation A, 2. lifetime tau • Vud from nuclear beta-decay, 100 inputs • A new measurements of correlation A • Future trends • Sources • Experiments
Quark Mixing and CKM Unitarity • Standard Model: • quark-mixing should be 'zero-sum game': • quark mixing = pure rotation in flavor space • i.e. CKM quark mixing matrix should be unitary • Vud from • Nuclear beta-decay • Neutron beta-decay • Pion beta-decay
Unitarity check Vub 0.00001% Vus 5% Mixing of quarks = rotation in flavor-space: Test in first row: |Vud|2 + |Vus|2 + |Vub|2 ≈ cos2θ + sin2θ + 0 < 1 ? : Cabibbo Vud 95%
Situation untill 2004 • Check unitarity via elements of the first row: • Vus and Vub from particle physics data (K and B meson decays) • From nuclear β decay (world average 2004): • Vud obtained from avg. Ft and GA from muon decay • From particle physics (neutron decay): • Vud obtained from neutron β decay asymmetry A and lifetime t [I.S. Towner & J.C. Hardy, submitted to Phys. Rev. C (2005)] Δ = 0.0034(14) (PDG 2004) [H. A. et al., PRL 88 (2002) 211801]
A Neutron Spin Electron B Neutrino C Proton Correlation measurements in -decay Observables in neutron decay: Lifetime Spin Momenta of decay particles
Neutron Spin A A Neutron Spin Electron Electron Vud from neutron beta-decay Only 2 measurements: 1.Lifetime t 2.Correlation coefficient A() Vud =0.9717(13) = 0.9717(tau:4)(theory:2)(A:12) = gA/gV
PROCESSES WITH SAME FEYNMAN DIAGRAM: • Solar cycle p p D e+ e p p e D e … • Neutron star formation p e n e • Primordial element formation n e+ p e'p e n e n p ee' • Neutrino detectors p e' n e+ • Neutrino forward-scatteringe p e+ n etc. • W, Z-production p p' W ee' etc. = gA/gV
Correlation ASpectrometer PERKEO II Magnetic field Polarizer Spin flipper Cross section neutron beam
The new A, (B, C) measurement 2004University of Heidelberg, ILL • Precise Electron Spectroscopy • Proton detection • Asymmetry A, B, C • A new beam: decay rate 1 MHz/m • The ‘ballistic’ super-mirror cold-neutron guide H113 • H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002) • New Polarizers (TU Munich, ILL) • New Geometry for Beam polarization • A perfectly polarized neutron beam • Signal to Background > 1000 : 1
The new A measurement • Precise Electron Spectroscopy • Asymmetry A Status 2002 • A new beam: decay rate 1 MHz/m • The ‘ballistic’ super-mirror cold-neutron guide H113 • H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002) • New Polarizers (TU Munich, ILL) • New Geometry for Beam polarization • A perfectly polarized neutron beam • Signal to Background > 1000 : 1 Status 2004 Daniela Mund et al., preliminary
Technical developments:New sources • SNS, Oak Ridge, Tennessee:
FRM2 2005 • UCN source PSI • UCN source at Vienna • UCN Source at Mainz • Cold neutrons at the FRM II • UCN source at the FRM II
Experiments: Angular correlations in neutron decay Mainz, Munich • New developments: hep-ph/0312124 CKM-Workshop, Sep. 2002, PMSN-Workshop, NIST 2004 • “little” a: aSpect, Mainz, Munich,2005 • “Big” A,B,C: HD, 2004 • “Big” A, small terms: HD, 2006 • “little” a: NIST • “Big” A: LANL,... • “abBA”: abBA-Collaboration • “Big A + B”: Gatchina • “Big” R: PSI, ongoing • “Big” D: emiT, • “Big” D: Trine ? • “Fermi”: HD, Mz, TUM, 2008/2009 LANSL TRINE 2000
PERKEO III, Correlation A, University HD neutron cloud detector proton or electron detector ~2m, 150mT velocity selector neutron beam chopper beam stop decay volume Dubbers, Märkisch, H.A.
Particles And Fields matrix for d-u transition: hadron and lepton currents: vector- and axial vector currents: Lagrange function for neutron decay:
aSPECT, correlation a, University Mz/TUM Proton spectroscopy
2. The lifetime of the neutron • Methode: store UCN in bottles • Early universe: first 3 minutes • Nukleo synthesis: H, D, 3He, 4He, Li • Quark mixing • Input für Vud, 1. Element of CKM Matrix • Precision / ~ 10-3 TUM NIST
2. The lifetime of the neutron • Methode: store UCN in bottles • Early universe: first 3 minutes • Nukleo synthesis: H, D, 3He, 4He, Li • Quark mixing • Input für Vud, 1. Element of CKM Matrix • Precision / ~ 10-3 TUM NIST
Neutron lifetime t NIST: Mampe et al., PRL 63 593 (1989) Huffmann et al., Nature Munich: ri = 15 cm Ra = 30 cm
The Neutron Lifetime and Big Bang Nucleo Synthesis • Problem 1s after Big Bang: • What does a gas of n and p, when the universe expands and the temperature drops? • Inputs: • neutron lifetime tau • Cross sections • neutrino cross-sections 1/tau • nuclear physics 0.1 – 1 MeV (measured!) • Outputs: H, D, He, Li • number of particle families N • density of (ordinary) matter in universe
The Neutron Lifetime and Big Bang Nucleo Synthesis • Problem 1s after Big Bang: • What does a gas of n and p, when the universe expands and the temperature drops? • Inputs: • neutron lifetime tau • Cross sections • neutrino cross-sections 1/tau • nuclear physics 0.1 – 1 MeV (measured!) • Outputs: H, D, He, Li • number of particle families N • density of (ordinary) matter in universe
Vud from neutron b-decay Wilkinson 1982, CKM Workshop September 2002: Marciano et Sirlin
2002: Free Parameters, Standard Model Ft-values Neutron Deviation from unitarity Visible in the “raw” data! hep-ph/0312124 hep-ph/0312150 Vud=0.9717(13) (4:)(12:A)(2:theory)
Free Parameters, Standard Model Ft-values Neutron Deviation from unitarity Visible in the “raw” data! hep-ph/0312124 hep-ph/0312150 Vud=0.9717(8) (4:)(7:A)(2:theory)
Weak Interaction symmetry tests, CVC hypothesis dm/m < 3·10-8 Vud from nuclear beta decays • Q – Decay energy mass m • T1/2 – Half-life • b – Branching ratio • PEC – Electron capture fraction • δR– Radiative correction • δC– Isospin symmetry breaking correction
Vud from superallowed β decay Wilkinson 2005
but • …
46 V • Savard et al. (2005): Q value increases (2005) • Vud= 0.97363(44) 0.97280(36) • Now bad fit • But average still Vud= 0.9739 0.9738(36)
42 Sc • Kaon 2005, R. Segal: • Q value remeasured • Agrees with V • All Q values must be remeasured (B. Marciano)
Summary • This was a talk about a wellknown unknown: Cabibbo angle Vud • Remeasurement of the beta asymmetry • Improvement by factor 2 • We need new lifetime measurements (2 years) • We need Q value (mass measurements) in nuclear beta-decays