360 likes | 462 Views
Jet Quenching: What it really measures?. Xin-Nian Wang Lawrence Berkeley National Laboratory. High-pT physics at LHC, Jyvaskyla, March 21-27,2007. Jet Quenching in A+A Collisions. leading particle. hadrons. q. q. hadrons. leading particle. Leading particle suppressed. hadrons. q. q.
E N D
Jet Quenching: What it really measures? Xin-Nian Wang Lawrence Berkeley National Laboratory High-pT physics at LHC, Jyvaskyla, March 21-27,2007
Jet Quenching in A+A Collisions leading particle hadrons q q hadrons leading particle Leading particle suppressed hadrons q q hadrons N-N collision A-A collision leading particle suppressed Comparative study of jet quenching schemes; A. Majumder QM06
Gyulassy-Levai-Vitev (GLV) • Operator formalism that sums order by order in opacity M. Gyulassy, P. Levai, I. Vitev, Nucl.Phys.B571:197,2000; Phys.Rev.Lett.85:5535,2000; Nucl.Phys.B594:371,2001; Phys. Lett.B538:282-288,2002.
Twist Expansion • Expansion in higher-twist operator of multiple parton scattering X. Guo, X. N. Wang, Phys. Rev. Lett. 85:3591 (2000); X. N. Wang, X. Guo, Nucl. Phys. A. A696:788, (2001); E. Wang, X. N. Wang, Phys. Rev. Lett.87, 142301,(2001); ibid 89 162301 (2002); B. Zhang, X.N.Wang, Nucl.Phys. A720:429-451,2003.
Armesto-Salgado-Wiedeman (ASW) U. Wiedemann, Nucl. Phys. B.582, 409 (2000); ibid. 588, 303 (2000), Nucl. Phys. A.690 (2001); C. Salgado, U. Wiedemann, Phys.Rev. D. 68 014008 (2003); K. Eskola, H. Honkanen, C. Salgado, U. Wiedemann, Nucl. Phys. A.747, 511(2005); N. Armesto, C. Salgado, U. Wiedemann, Phys.Rev.D.72,064910 (2005). • Path integral in opacity with summation of many soft scatterings, dipole model of the parton interaction with medium
Arnold-Moore-Yaffe (AMY) P. Arnold, G. Moore, L. Yaffe, JHEP 0111:057,2001; ibid 0112:009,2001; ibid. 0206:030, 2002; S. Jeon, G. Moore Phys. Rev. C71:034901,2005; S.Turbide, C.Gale, S. Jeon, G. Moore, Phys. Rev. C72:014906,2005. • Finite temperature field theory approach, transport equation for leading parton with HTL resumed interaction
Elastic Energy Loss +…. + +
Interference effect in elastic energy loss XNW nucl-th/0604040
Radiative energy loss +…. + +
Radiative vs elastic energy loss For E=10 GeV, T=0.2 GeV, L=6 fm, as=0.3
q-hat and shear viscosity h Majumder, Muller and XNW (hep-ph/0703082) Shear viscosity Tested against different transport calculations of h and q-hat, Either through collisions or color field fluctuations Jet quenching
Fragility of single hadron suppression Eskola et al., hep-ph/0406319 Robustness of jet quenching as probes?
NLO pQCD Calculation NLO (Next to Leading Order ): Jet quenching in 2→3 processes Zhang, Owens, Enke Wang and XNW (nucl-th/0701045 )
Centrality Dependence PRL95(2005)152301
Centrality Dependence PRL95(2005)152301
q-hat in a nucleus e- Enke Wang & XNW PRL 89, 162301(2002)
Conclusions • Jet quenching measures q-hat- gluon distribution of the medium • Elastic energy loss negligible • qhat viscosity • NLO pQCD analysis of jet quenching • both single and dihadrons • RAANLO < RAALO • Sensitivity of single and dihadron suppression to the initial gluon density • Centrality dependence of single and dihadron suppression • Single hadron suppression become fragile while dihadron suppression is more robust probe at LHC
Modified Fragmentation Functions 1-D expanding Transport coefficient Energy loss parameter
LO pQCD of high pT hadron spectra 2→2 processes Jet quenching in 2→2 processes A factor K=1.5-2 account for higher order corrections