E N D
1. OCEN 201Introduction to Ocean & Coastal Engineering Instruments & Measurements
Jun Zhang
Jun-zhang@tamu.edu
14. Description
15. Overview AUV / UUV
Self-regulated buoyancy
Propelled by battery power
Propelled by ocean’s thermal energy
New technology!
16. History Preliminary designs (1986)
Test runs: Florida, New York (1991)
Result: the “Slocum” glider
Scripps / Woods Hole: “Spray”
APL-UW: “Seaglider”
Slocum “Thermal Glider” (2005)
17. Vehicle Control Driving force: lift provided by wings
Pitch/roll: internal weight shift
Onboard computers
Surface GPS fixes
Pressure sensors
Tilt sensors
Magnetic compasses
18. Slocum, Spray, and Seaglider
19. Webb Research “Slocum” Weight: 52 kg
Diameter: 21.3 cm
Length: 1.5 m
Speed: 40 cm/s
Depth: 4 – 200 m
Endurance: 30 days
Range: 1500 km
Alkaline batteries
20. Webb Research “Slocum”
21. Webb’s “Thermal Glider” Weight: 60 kg
Diameter: 21.3 cm
Length: 1.5 m
Speed: 40 cm/s
Depth: 4 – 2000 m
Endurance: 5 years!
Range: 40000 km
Environmental power
22. Webb’s “Thermal Glider”
23. Scripps/Woods Hole “Spray” Weight: 52 kg
Diameter: 20 cm
Length: 2 m
Speed: 25 cm/s
Depth: 1500 m
Endurance: 815 cycles
Range: 4700 km
Lithium cells
24. Scripps/Woods Hole “Spray”
25. APL-UW “Seaglider” Weight: 52 kg
Diameter: 30 cm
Length: 1.8 m
Speed: 25 cm/s
Depth: 1000 m
Endurance: 650 cycles
Range: 4600 km
Lithium cells
26. APL-UW “Seaglider”
27. Design
28. Early Field Trials Wakulla Springs, Florida
Straight flight, dives, turns
Navigation and data relays
Telemetry recorded
Maneuvering parameters
Instabilities found
29. Test Dive Profile
30. Design Solutions Increase glide speed
Decrease pitch/heading oscillations
Increase stall resistance
Revise autopilot algorithms
Swept wings
Antenna moved to nose
31. Test Results, Conclusions Glide slope ratio similar to Space Shuttle
Energy expended at bottom of dive cycle
Decrease dive cycles = less energy
How do we decrease cycles?
*Lower glide speeds*
Longer endurance
Greater range
32. Applications
33. Current Uses Slocum: shallow water, short range
Spray/Seaglider: deeper, longer dives
Take measurements
-temperature
-conductivity (salinity)
-currents
-chlorophyll fluorescence
-optical backscatter
34. Current Uses Seaglider:
-physical, chemical oceanography
-tactical oceanography
-underwater Reconnaissance
-communications gateway
-navigation aid
35. Dive Profile
36. Dive Profile
37. Spray: La Jolla 2001 Underwater canyon, 3 km width
11 day mission
Maintained synthetic mooring
Plotted wave, current propagation
38. Monterey 2003 10 Slocums and 5 Sprays
Sample 100 square-km area
Use networking to forecast conditions
Example of large-scale team usage
39. Monterey 2003
40. Spray: Gulf Stream 2004 New England to Bermuda
First crossing of the Gulf Stream
41. Seaglider: TASWEX-04 Navy ASW exercise, East China Sea
Battlespace assessment
Tactical remote sensing
Mission successful
42. Future Uses ONR: Liberdade XRay
USN “PLUSNet” program
Largest glider
Hydrodynamic efficiency
Acoustics, electric field sensors
1-3 kt cruise, 1200-1500 km range
43. Liberdade XRay
44. Economics