1 / 31

Chapter 2 Linear Functions and Equations

Chapter 2 Linear Functions and Equations. Linear Equations. 2.2. Learn about equations and recognize a linear equation Solve linear equations symbolically Sole linear equations graphically and numerically Solve problems involving percentages Apply problem-solving strategies.

rfujiwara
Download Presentation

Chapter 2 Linear Functions and Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 2 Linear Functions and Equations

  2. Linear Equations 2.2 Learn about equations and recognize a linear equation Solve linear equations symbolically Sole linear equations graphically and numerically Solve problems involving percentages Apply problem-solving strategies

  3. Equations An equation is a statement that two mathematical expressions are equal. Some examples of equations are:

  4. Solutions to Equations To solve an equation means to find all the values of the variable that make the equation a true statement. Such values are called solutions. The set of all solutions is the solution set. Solutions to an equation satisfy the equation. Two equations are equivalent if they have the same solution set.

  5. Types of Equations in One Variable Contradiction – An equation for which there is no solution. Example: 2x + 3 = 5 + 4x – 2x Simplifies to 2x + 3 = 2x + 5 Simplifies to 3 = 5 FALSE statement – there are no values of x for which 3 = 5. The equation has NO SOLUTION.

  6. Types of Equations in One Variable Identity – An equation for which every meaningful value of the variable is a solution. Example: 2x + 3 = 3 + 4x – 2x Simplifies to 2x + 3 = 2x + 3 Simplifies to 3 = 3 TRUE statement – no matter the value of x, the statement 3 = 3 is true. The solution is ALL REAL NUMBERS

  7. Types of Equations in One Variable Conditional Equation – An equation that is satisfied by some, but not all, values of the variable. Example 1: 2x + 3 = 5 + 4x Simplifies to 2x – 4x = 5 – 3 Simplifies to 2x = 2 Solution of the equation is: x = 1 Example 2: x2 = 1 Solutions of the equation are: x = 1, x = 1

  8. Linear Equations in One Variable A linear equation in one variable is an equation that can be written in the form ax + b = 0, where a and b are real numbers with a ≠ 0. If an equation is not linear, then we say it is a nonlinear equation.

  9. Linear Equations in One Variable Rules of algebra can be used to write any linear equation in the form ax + b = 0. A linear equation has exactly one solution Examples of linear equations:

  10. Symbolic Solutions Linear equations can be solved symbolically, and the solution is always exact. To solve a linear equation symbolically, we usually apply the properties of equality to the given equation and transform it into an equivalent equation that is simpler.

  11. Properties of Equality Addition Property of Equality If a, b, and c are real numbers, then a = b is equivalent to a + c = b + c. Multiplication Property of Equality If a, b, and c are real numbers with c ≠ 0, then a = b is equivalent to ac = bc.

  12. Solve the equation 3(x– 4) = 2x – 1. Check your answer. Example: Solving a linear equation symbolically Solution Apply the distributive property

  13. Example: Solving a linear equation symbolically The solution is 11. Check the answer.

  14. Solve the linear equation Example: Eliminating fractions Solution To eliminate fractions, multiply each side (or term in the equation) by the LCD, 12.

  15. The solution Example: Eliminating fractions

  16. Solve the linear equation. Example: Eliminating decimals Solution To eliminate fractions, multiply each side (or term in the equation) by the LCD, 12.

  17. The solution Example: Eliminating decimals To eliminate decimals, multiply each side (or term in the equation) by 100.

  18. Intersection-of-Graphs Method The intersection-of-graphs method can be used to solve an equation graphically. STEP 1: Set y1 equal to the left side of the equation, and set y2 equal to the right side of the equation. STEP 2: Graph y1 and y2. STEP 3: Locate any points of intersection. The x-coordinates of these points correspond to solutions to the equation.

  19. Solve graphically and symbolically. Example: Solving an equation graphically and symbolically Solution Graph Intersect at (2, 3), solution is 2.

  20. Example: Solving an equation graphically and symbolically Solution is 2, agrees with graphical.

  21. Solve numerically to the nearest tenth. Enter Example: Solving an equation numerically Solution Make a table for y1, incrementing by 1. This will show the solution is located in the interval 1 < x < 2.

  22. Example: Solving an equation numerically Make a table for y1, start at 1, increment by 0.1. Solution lies in 1.4 < x < 1.5 Make a table for y1, start at 1.4, increment by 0.01. Solution lies in 1.43 < x < 1.44 Solution is 1.4 to the nearest tenth

  23. The area of a trapezoid with bases a and b and height h is given by Solve this equation for b. Example: Solving for a variable Solution Multiply each side by 2 Divide each side by h Subtract a from each side isolates b

  24. Solving Application Problems STEP 1: Read the problem and make sure you understand it. Assign a variable to what you are being asked. If necessary, write other quantities in terms of the variable. STEP 2: Write an equation that relates the quantities described in the problem. You may need to sketch a diagram and refer to known formulas. STEP 3: Solve the equation and determine the solution. STEP 4: Look back and check your solution. Does it seem reasonable?

  25. In 1 hour an athlete traveled 10.1 miles by running first at 8 miles per hour and then at 11 miles per hour. How long did the athlete run at each speed? Example: Solving an application involving motion Solution STEP 1:Let x represent the time in hours running at 8 mph, then 1 – x represents the time spent running at 11 mph. x: Time spent running at 11 miles per hour 1 – x: Time spent running at 9 miles per hour

  26. Example: Solving an application involving motion STEP 2:d = rt; total distance is 10.1 STEP 3: Solve symbolically

  27. Example: Solving an application involving motion STEP 3:The athlete runs 0.3 hour (18 min) at 8 miles per hour and 0.7 hour (42 min) at 11 miles per hour. STEP 4:check the solution This sounds reasonable. The runner’s average speed was 10.1 miles per hour so the runner must have run longer at 11 miles per hour than at 8 miles per hour.

  28. Pure water is being added to 153 milliliters of a 30% solution of hydrochloric acid. How much water should be added to dilute the solution to a 13% mixture? Example: Mixing acid in chemistry Solution STEP 1:Let x be the amount of pure water added to the 153 ml of 30% acid to make a 13% solution x: Amount of pure water to be added x + 153: Final volume of 13% solution

  29. Example: Mixing acid in chemistry STEP 2:Pure water contains no acid, so the amount of acid before the water is added equals the amount of acid after water is added. Pure acid before is 30% of 153, pure acid after is 13% of x + 153.The equation is:

  30. Example: Mixing acid in chemistry STEP 3:Solve: divide each side by 0.13

  31. Example: Mixing acid in chemistry STEP 3:We should add about 200 milliliters of water. STEP 4:Initially the solution contains 0.30(153) = 45.9 milliliters of pure acid. If we add 200 milliliters of water to the 153 milliliters, the final solution is 353 milliliters, which includes 45.9 milliliters of pure acid. Concentration or ≈ 13%

More Related