240 likes | 391 Views
Basics of CAD. Ahto KALJA Department of Computer Engineering. CAD referencies :. 1. A.Kalja, T.Tiidemann, E.Tõugu. Masin- projekteerimine. Tallinn, Valgus, 1991, 105 lk. 2. A. Saxena, B. Sahay. Computer Aided Engineering Design. Springer, 2005, 394 p.
E N D
Basics of CAD Ahto KALJA Department of Computer Engineering Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
CAD referencies: 1. A.Kalja, T.Tiidemann, E.Tõugu. Masin- projekteerimine. Tallinn, Valgus, 1991, 105 lk. 2. A. Saxena, B. Sahay. Computer Aided Engineering Design. Springer, 2005, 394 p. 3. Dean L. Taylor. Computer-Aided Design. Addison-Wesley, 1992, 492 p. 4. http://cs.ioc.ee/~nut/ 5. Eds. J. Gero and F. Sudweeks. Artificial Intelligence in Design ‘96. Kluwer Academic Publishers, 1996, Dordrecht, 782 p. 6. Sixth International Conference on Design Computing and Cognition (DCC'14 or DCC14) 7. Electronic magazineComputer-Aided Design Masinprojekteerimise alused * A. Kalja * Arvutitehnika instituut
CAD 1. Definitions CAD, in broadest sense,is the use of computersfor the design work CAD, in the narrower sense, is any object or process project automated preparation using a computer CAD Computer Aided Design CAM Computer Aided Manufacturing CAD/CAM CAE Computer Aided Engineering CAT C A Testing CAP C A Planning CAIIP Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Domains of CAD Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Dialog Computer graphics Data base Main program Basic software Hardware Software General structure of a CAD system Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
A) Public CAD system B) One user sytem . . . C) Local area network of a CAD system Classification of CAD systems Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Optimization calculation Spreadsheets Simulation Finite Element Method record keeping visualization Geometry Algebraic Manipulation Graphics Relationship among CAD applications and aspects of computation Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Learn about the unique features of NEi Nastran with this 90-second overview. [Watch video] NEi Nastran Demo Video Learn about the unique features of NEi Nastran with this 90-second overview. [Watch video] http://www.nenastran.com/newnoran/neiNastranDemo Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
2. Methods 2.1 Designing Technical proposal Rough plan Technical project Documentation Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
How Vasa was built The work on Vasa was led by a Dutchman, Henrik Hybertsson, an experienced shipwright. In this period, Dutch ships were not built from drawings, instead the shipwright was given the overall dimensions and used proportions and rules of thumb based on his own experience to produce a ship with good sailing qualities. Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Design problem Functional design Functional schema Schema design Principle schema Detail schema Project- documentation Steps of design Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Start Design problem setting End Assessment and problem adjustment Analysis Synthesis Modeling Design cycle Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
2.2 Modeling We take a look the concept „modeling“in broader sence, which also includesthe preparation of models Modeling problems staticdynamic problems of continuous processes problems of discrete processes Problems of statistical processes According to the equations: - Models with functional dependencies - Models with ordinary differential equations - Models with partial derrivatives differ. equations Example:shaftneck neck: d:num l:num mass:num mass=pi*7.83*d*d*l/4*106 Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Descript. of a shaft: shaft: mass:num length:num all.mass->mass(sum) all.length->length(sum) Description of a shaft with 3 necks: v: A1:neck d=28, l=30 A2:neck d=40 A3:neck d=30, l=40 copyshaft Possible calculations: - ?A1.mass - ?A3.mass - length:=125 ?A2.L - A2.L:=55 ?A2.mass - A2.L:=55 ? length - A2.L:=55 ?mass - length:=125 ? mass Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
neck l d shaft 40 28 30 30 ? 40 ? A1 A2 A3 Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
2.3 Optimization Let x be the set of projected object parameters. To maximize f (x), varying x-iin the domain S, where f (x)is the objective function, expresses kindness, productivity, ... To minimize g (x), varying x-i in the domain S, where g (x)is the objective function, expresses the cost of mass, consumedcapacity or other. g(x)=-f(x) restrict.inequalities hi(x)>0; i=1,2,…,n S equalities vj(x)=0; j=1,2,…,m Example:rectangular cross-section of the pipe Find the maximum surface, x1 and x2 are the sides, Restrictions x1>=c ja x2>=c i.e. none of the side should not be too short 2(x1+ x2)<=c1 i.e. circumference of the pipe should not be too big ,where c ja c1are constances Maximize the value of x1*x2, varying vector(x1, x2) in the domain, which has been given by x1-c>=0, x2-c>=0 ja c1-2(x1+x2)>=0 Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
Solution: Hyperbole, which touch to the area S, due to the symmetry of the solution is x1 = x2, so 2 (x1 + x2) = c1 x1=x2=c1/4 Finding min. material cost 2 (x1 + x2)restricting surface valuex1x2>=(c1/4)2 Minimizing the x1 + x2 value, varying a vector(x1, x2) in the domain, which is given by x1-c>=0, x2-c>=0 ja x1x2-c12/16>=0 Solution: is here too : x1=x2=c1/4 Masinprojekteerimine * A.Kalja * Arvutitehnika instituut
x1 x2 Pipe
Examples of the optimizations Masinprojekteerimine * A.Kalja * Arvutitehnika instituut