260 likes | 328 Views
CSE 326: Data Structures Topic 18: The Algorhythmics. Luke McDowell Summer Quarter 2003. Today’s Outline. Greedy Divide & Conquer Dynamic Programming. Greedy Algorithms. Repeat until problem is solved: Consider possible next steps Choose best-looking alternative and commit to it
E N D
CSE 326: Data StructuresTopic 18: The Algorhythmics Luke McDowell Summer Quarter 2003
Today’s Outline • Greedy • Divide & Conquer • Dynamic Programming
Greedy Algorithms Repeat until problem is solved: • Consider possible next steps • Choose best-looking alternative and commit to it Greedy algorithms are normally fast and simple. Sometimes appropriate as a heuristic solution or to approximate the optimal solution.
Greed in Action • Best First Search • A* Search • Huffman Encodings • Kruskal’s Algorithm • Prim’s Algorithm • Dijkstra’s Algorithm • Scheduling
Items (mostly junk food) Grocery bags Sizes s1, s2,…, sN (0 < si 1) Size of each bag = 1 The Grocery Bagging Problem • You are an environmentally-conscious grocery bagger at QFC • You would like to minimize the total number of bags needed to pack each customer’s items.
Optimal Grocery Bagging: An Example • Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3 • How may bags of size 1 are required? • Can find optimal solution through exhaustive search • Search all combinations of N items using 1 bag, 2 bags, etc. • Runtime? Only 3 bags needed: (0.2,0.8) (0.3,0.7) (0.1,0.4,0.5) Exponential!
Bin Packing • General problem: Given N items of sizes s1, s2,…, sN (0 < si 1), pack these items in the least number of bins of size 1. • The general bin packing problem is NP-complete • Reductions: All NP-problems SAT 3SAT 3DM PARTITION Bin Packing (see Garey & Johnson, 1979) Items Bins Size of each bin = 1 Sizes s1, s2,…, sN (0 < si 1)
Greedy Solution? • Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3 FirstFit BestFit Both use at most 1.7M M = optimal number. Best Fit better on average Best = tightest
Another Greedy Solution? • Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3 FirstFit Decreasing Both use at most 1.2M + 4 Offline algorithm
Divide & Conquer • Divide problem into multiple smaller parts • Solve smaller parts • Solve base cases directly • Otherwise, solve subproblems recursively • Merge solutions together (Conquer!) Often leads to elegant and simple recursive implementations.
Divide & Conquer in Action • MergeSort • QuickSort • buildTree • Closest points • Find median
Fibonacci Numbers F(n) = F(n - 1) + F(n - 2) F(0) = 1 F(1) = 1 Divide & Conquer int fib(int n) { if (n <= 1) return 1; else return fib(n - 1) + fib(n - 2); }
Fibonacci Numbers F(n) = F(n - 1) + F(n - 2) F(0) = 1 F(1) = 1 Divide & Conquer F6 F5 int fib(int n) { if (n <= 1) return 1; else return fib(n - 1) + fib(n - 2); } F4 F4 F3 F3 F2 F3 F2 F2 F1 F2 F1 F1 F0 F2 F1 F1 F0 F1 F0 F1 F0 F1 F0 Runtime: > 1.5N
Fibonacci Numbers F(n) = F(n - 1) + F(n - 2) F(0) = 1 F(1) = 1 Memoized int fib(int n) { // Create a “static” array however your favorite language allows int fibs[n]; if (n <= 1) return 1; if (fibs[n] == 0) fibs[n] = fib(n - 1) + fib(n - 2); return fibs[n]; } O(n) Runtime:
Memoizing/Dynamic Programming • Define problem in terms of smaller subproblems • Solve and record solution for base cases • Build solutions for subproblems up from solutions to smaller subproblems Can improve runtime of divide & conquer algorithms that have shared subproblems with optimal substructure. Usually involves a table of subproblem solutions.
Dynamic Programming in Action • Sequence Alignment • Fibonacci numbers • All pairs shortest path • Optimal Binary Search Tree • Matrix multiplication
Sequence Alignment Biology 101:
DNA Sequence • String using letters (nucleotides): A,C,G,T • For example: ACGGGCATTATCGTA • DNA can mutate! • Change a letter: ACGGGCAT → ACGTGCAT • Insert a letter: ACGGGCAT → ACGGGCAAT • Delete a letter: ACGGGCAT → ACGGGAT • A few mutations makes sequences “different”, but “similar” • Similar sequences often have similar functions
What is Sequence Alignment? • Use underscores (_) or wildcards to match up 2 sequences • The “best alignment” of 2 sequences is an alignment which minimizes the number of “underscores” • For example: ACCCGTTT and TCCCTTT A_CCCGTTT _TCCC_TTT Best alignment: (3 underscores)
Solutions • Naïve solution • Try all possible alignments • Running time: exponential • Dynamic Programming Solution • Create a table • Table(x,y): # errors in best alignment for first x letters of string 1, and first y letters of string 2 • Running time: polynomial
Example Alignment Match ACCGTTAG with ACTGTTAA (1) match ‘G’ with ‘_’: 1 + align(ACCGTTA,ACTGTTAA) (2) match ‘A’ with ‘_’: 1 + align(ACCGTTAG,ACTGTTA) • Suppose we have already determined the best alignment for: • First x letters of string1 with first y-1 letters of string2 • First x-1 letters of string1 with first y-1 letters of string2 • First x-1 letters of string1 with first y letters of string2 If (string1[x] == string2[y]) then TABLE[x,y] = TABLE[x-1,y-1] Else TABLE[x,y] = min(1+TABLE[x,y-1], 1+TABLE[x-1,y])
Example GGCAT and TGCAA (empty) T G C A A (empty) 0 1 2 3 4 5 G 1 G 2 C 3 A 4 T 5
Example GGCAT and TGCAA (empty) T G C A A (empty) 0 1 2 3 4 5 G 1 2 1 2 3 4 G 2 3 2 3 4 5 C 3 4 3 2 3 4 A 4 5 4 3 2 3 T_GCAA_ _GGCA_T T 5 4 5 4 3 4
Pseudocode (bottom-up) int align(String X, String Y, TABLE[1..x,1..y]) { int i,j; // Initialize top row and leftmost column for (i=1; i<=x, ++i) TABLE[i,1] = i; for (j=1; j<=y; ++j) TABLE[1,j] = j; for (i=2; i<=x, ++i) { for (j=2; j<=y; ++j) { if (X[i] == Y[j]) TABLE[i,j] = TABLE[i-1,j-1] else TABLE[i,j] = min(TABLE[i-1,j], TABLE[i,j-1])+1 } } return TABLE[x,y]; } O(N2) runtime:
Pseudocode (top-down) int align(String X,String Y,TABLE[1..x,1..y]) { Compute TABLE[x-1,y-1] if necessary Compute TABLE[x-1,y] if necessary Compute TABLE[x,y-1] if necessary if (X[x] == Y[y]) TABLE[x,y] = TABLE[x-1,y-1]; else TABLE[x,y] = min(TABLE[x-1,y], TABLE[x,y-1]) + 1; return TABLE[x,y]; }
Dynamic Programming Wrap-Up • Re-use expensive computations • Store optimal solutions to sub-problems in table • Use optimal solutions to sub-problems to determine optimal solution to slightly larger problem