1 / 21

Now

Preparing for LHC physics in ATLAS Ivo van Vulpen. Complex SM. SUSY/Higgs. Early physics. Now. Calibrations. Detector commissioning. Look for new physics in ATLAS at 14 TeV . 3. Higgs/SUSY . 2. Understand SM+ATLAS in complex topologies. Top quark pairs . 1.

rhonda
Download Presentation

Now

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Preparing for LHC physicsin ATLASIvo van Vulpen Complex SM SUSY/Higgs Early physics Now Calibrations Detector commissioning

  2. Look for new physicsin ATLAS at 14 TeV 3 Higgs/SUSY 2 Understand SM+ATLASin complex topologies Top quark pairs 1 Understand SM+ATLAS in simple topologies W/Z 0 Understand ATLAS Testbeam/cosmics LHC start-up programme Integrated luminosity 1 fb–1 100 pb–1 10 pb–1 Andreas Hoecker Time LHC startup

  3. The ATLAS detector at day-1  Expected detector performance from ATLAS(based on testbeam, cosmics-data and simulations) Performance Expected day-1 Physics samples to improve ECAL uniformity 1-2% Ze+e-, minimum biase/γ scale 2% Ze+e-HCAL uniformity 3% jets, single pionsJet scale <10% γ/Z+jet, Wjj in tt eventsTracking alignment 10-200 μm Rφ tracks, isolated μ, Zμ+μ-  First job is to get a combined ATLAS detector operational

  4. Maaike LimperCaroline MagrathEgge van der Poel First SM peaks & an early discovery J/ Y Number of events Number of events ATLAS preliminary, 10 pb-1 ATLAS preliminary, 1 pb-1 Mμμ (GeV) Mμμ (GeV) Events per day at day 1 (L=1031):4200 (800) J/ (У)  +- 160 Z  +- Reconstruction efficiencies, Muon spectrometer alignment,Detector and trigger performance, Tracking momentum scale, ECAL uniformity, E/p scale, …

  5. First SM peaks & an early discovery J/ Y Number of events Number of events ATLAS preliminary, 10 pb-1 ATLAS preliminary, 1 pb-1 Mμμ (GeV) Mμμ (GeV) Drell-Yan (SM) +- Early discoveries:Heavy resonances  lepton pairs e+e- Mμμ (GeV)

  6. Top quark physics 90% 10% t t Top quark pair-production: σtt(LHC) ~ 833 ± 100 pb 1 top quark pair per second Focus on semi-leptonic decays (4/9) Top analyses: SM: Top, single-top non-SM: Mtt, FCNC (tZc), H+/-

  7. Martijn GosselinkAlexander Doxiadis Commissioning analysis:- Missing ET > 20 GeV - 1 lepton PT > 20 GeV - 3(4) jets PT > 40(20) GeV Top = 3-jet combination with highest sum PT Note: No b-tag information used 100 pb-1 muon analysis ~ 500 events Mjjj (GeV) Top quark physics “Top quark pair production has it all”: ≥4 jets, b-jets, neutrino, lepton a) Early cross-section measurement b) Unique calibration opportunities  Background to many new physics signals

  8. Alexander DoxiadisManuel KaylErik van der Kraaij Manouk RijpstraMartijn Gosselink Menelaos Tsiakiris Rate/jet Non-prompt Fake Muon 1.3·10-3 97% 3% Electron 1.0·10-3 62% 38% Number of events W-boson transverse mass (GeV) Top quark physics(understanding ATLAS in complex topologies) • Extra/Fake isolated leptonsEstimate rate for arbitrary event-topology (multi-jet QCD) • 2) Calibrate ET-miss scale: • MT(W) using constrained fits • 3) Extra jets: tt+jets • Low mass Higgs boson: tt+h(bb)

  9. Martijn GosselinkManuel Kayl The Higgs boson • LHC reach (ATLAS+CMS): 5 fb-1 needed for 5σ discovery- mh < 130 GeV: tth(hbb). Difficult. > 130 GeV: hWW(*) and hZZ(*) Direct: mh >114.4 GeV at 95% CL EW-fit+direct: mh< 182 GeV at 95% CL - 5σdiscovery - 95% CL exclusion 1 fb-1 WW bb LEP direct search Luminosity needed for discovery (fb-1) ZZ LEP direct search Higgs branching fraction Higgs decay ATLAS + CMS Gluonstau’s 100 200 300 500 1000 Higgs boson mass (GeV) Higgs boson mass (GeV) Note: to prove we see the SM Higgs boson requires (much) more data

  10. Max BaakGijs van den Oord No lose approach:Something should regularize vector boson scattering in SM • “No-lose” theorem: W-W scattering: Stat. Significance [SD] W.Z W.Z W.Z W.Z theory + experiment Higgs boson mass (GeV) The Higgs boson(vector boson fusion: W+W-hW+W- l+vl-v) - In combination with gg hWW- Less statistics, but clear signature5-dimensional fit… based fully on background control samples 1 fb-1 data: ~2.5 sigma -- background signal + bkg Number of events mh = 170 GeV Transverse Higgs boson mass (GeV)

  11. ATLAS 100 pb-1 800700600500400300200100 0 Mass spectrum gluino Particle mass (GeV) m0 = 100 GeV m1/2 = 250 GeV tan  = 10 Higgs boson(LEP) LSP (ΩDM) Supersymmetry SUSY: - boson/fermion symmetry, SM particles have partners, LSP - broken  many models/topologies (GMSB, AMSB,NUHM,mSUGRA) mSUGRAtan(β)=10 g-2 m0 (GeV) (WMAP) stau LSP m1/2 (GeV)

  12. Supersymmetry(decay chains and event topologies) 800700600500400300200100 0 Mass spectrum Particle mass (GeV) ≥4 jets 0,1,2 leptons (a lot of) missing ET SUSY events look like top events

  13. ATLAS’ inclusive SUSY searches Inclusive search (1 lepton) Number of events ATLAS reach: ~ 1 TeV for 1 fb-1 Effective mass (GeV) Note: Much more data required to:- is excess sign of supersymmetry ? - reconstruct (part of) particle spectrum and underlying parameters

  14. Alex KoutsmanFolkert KoetsveldNicole Ruckstuhl Data-driven background estimates(Nikhef’s main contribution to ATLAS SUSY search) Determine SM background in signal region: a) Extrapolate three SM backgrounds separately to signal region b) Account for SUSY signal events in sidebands SM: tt(lvqq) SUSY SM: tt(lvlv) SM:W+jets MT (GeV) MT (GeV) MT (GeV) MT (GeV) sideband sideband sideband sideband ET-miss (GeV) ET-miss (GeV) ET-miss (GeV) ET-miss (GeV)

  15. Calabi-Yau More exotic scenario’s “An experimentalist cannot afford to have a theoretical predjudice” • Extra space-dimensions: - Kaluza-Klein excitations: G(n) ,Z(n) - Mini black holes • Z’, ZH, W’, WH • Little/Twin Higgs • … Manouk Rijpstra WH tbtt Number of events Little Higgs300 fb-1 Great collaboration between experiment and theory ahead mass (GeV)

  16. Summary and outlook 2007: o ATLAS Detector paper o Update ATLAS analysis potential (CSC Notes, focus on early data) 2008: o Detector commissioningo Full dress rehearsal Simulate chain with mock data (data transfer, trigger, Grid-analyses) o Focus on first data: J/ψ, top-cross-section … Higgs, SUSY

  17. Back-up slides

  18. The Higgs boson Higgs production Signal significance cross-section (pb) Higgs boson mass (GeV) Higgs boson mass (GeV)

  19. The Higgs boson(properties and extensions to SM) ATLAS 300 fb-1Bosons: Γz/ΓW & Γγ/ΓW ~ 10-20%Fermions:Γτ/ΓW & Γb/ΓW ~ 40-50% Higgs boson properties: ΔM/M = 0.1% for 130<mh<450 GeV ΔΓ/Γ< 10% for mh>300 GeV Couplings SM-like ? Scalar ? Higgs self-coupling (λ) ~3000 fb-1 Precision coupling ratio Higgs boson mass (GeV) Extensions to SM: Simplest SM extension (MSSM):2 complex Higgs Doublets  5 Higgs bosons (3 neutral) MSSM searches:- Entire MSSM parameter space covered by at least one Higgs boson - Sometimes more Higgs bosons observable [link to SUSY]

  20. Supersymmetry Evolution of masses R-parity is conserved - Stable Lightest Supersymmetric Particle: LSP mass (GeV) mSUGRA: (5 parameters) - A0, sign(μ), tan (β) - m0: universal scalar mass - m½: universal gaugino mass Num ber of events m0 = 100 GeV m1/2 = 250 GeV tan  = 10 1016 10Log(Energy scale) (GeV) ATLAS mSUGRA reach

  21. Supersymmetry(exclusive searches) ATLAS 300 fb-1 cleaned SUSY signal 1) Exclusive search (end-point spectra) Num ber of events Standard model Di-lepton mass (GeV)

More Related