150 likes | 170 Views
Explore dynamic solar flares, prominence models, and non-equilibrium ionization with MALI code. Learn about ionization equilibrium in various plasma states from simulations and research studies.
E N D
Partial ionization of hydrogen plasma in the solar atmosphereNon-LTE modeler’s view P. Heinzel Astronomical Institute, Czech Academy of Sciences
Partial hydrogen ionization in a dynamicchromosphere Carlsson and Stein 2002, ApJ 572, 626 SeealsonewsimulationswithBifrost: Martínez-Sykora et al. 2015, Phil. Trans. R. Soc. A 373: 20140268 Martínez-Sykora et al. 2017, ApJ 847:36
Dynamic solarflares Flarix RHD code RADYN RHD code Heinzel 1991, Sol. Phys. 135, 65 Kašparová 2009, A&A 499, 923 Allred et al. 2015, ApJ 809, 104
Prominence non-LTE modelswith AD Fontenla+ 1996
NLTE prominence models 2D 1D Heinzel 2016 and Labrosse 2016 (in Solar Prominences, Springer)
MALI NLTEtransfer code • 1D/2D-slab geometry (MALI1D/MALI2D) – Heinzel 2016 • isothermal-isobaric slabs, generalization to PCTR • height-velocity dependent radiative boundary conditions (including photoionization by external radiation) • multilevel hydrogen atom with continuum (ionization) • other species like CaII and MgII • coupled radiative transfer + statistical equilibrium • fast numerical solution using the ALI techniques • Non-equilibrium ionization of hydrogen with the MALI code
NLTE modeling ofpartial hydrogen ionization • Input: T, p, D, vnt, H, vflow • Output: ne , nHI, radiative and collisionalrates, relaxationtimes • Prominence or a CME-coreisapproximated by a 1D/2D slabmodels (L-alpha line isoptically very thick in prominences, mostlythin in CMEs) • Wesolvetheradiative transfer and statistical-equilibriumequations for a 5-level + continuum hydrogen atom
MALI2D MALI1D Heinzel et al. 2015, A&A 579, A16 Jejčič et al. 2014, Sol. Phys. 289, 2487
Gridofmodelsfromcooleruptiveprominences to hotter CME cores • T-range: 10 000 – 100 000 K • p-range: 0.001 – 1.0 dyn cm-2 • D: 5000 and 50 000 km • vt: 5 km s-1 • H: 350 000 km • zeroflowvelocity (no Doppler effects in the continua) Heinzel and Jejčič 2019, in preparation
Histogram of the kinetic temperature (39) (30) Heinzel+ 2016, Jejčič+2017, Susino+ 2018
Photoionizationisnegligiblefor T > 50 000 K, wherehydrogen ionizationequilibriumisconsistentwith CHIANTI orArnaud & Rothenflug (1985); dependsonly on T For T < 50 000 K, photoionizationstarts to beimportant, and namelyatlow T between 10 000 – 30 000 K wherethesituationbecomes very complex
Herewe show thepartial hydrogen ionization as functionofelectrondensity Variationswith T show againthatfor T > 50 000 K theionizationdegree doesn‘tdepend on theelectrondensity, whileforlower T itdoes. Namelybetween 10 000 and 20 000 K theeffectisimportant
RU and CU are thephotoionization and collisionalratesfromthegroundstateof hydrogen. Weseehowthey vary with T and p. At lowpressures, thephotoionizationrates are fixed by the incident continuumradiation (prominence illuminationfromthesolar disk, atgiven H). At higherpressures, RU rates are higherdue to theintrinsic L-continuumradiation
Kinetic equilibrium for processes 1 <-> k (in general we have 5 eqs. for a 5 level H atom) Special case of ionization equilibrium: Relaxationtime: t = 1 / ( Pk1+ P1k )
T(K) in unitsof 10 000 K Estimatedrelaxationtimesrequired to achievetheionizationequilibriumfrom perturbed plasma states (e.g. T and/or p timevariations). At hightemperaturestherelaxationis very fast, attypical CME-corepressurest_relax < 10 sec. Undercool prominence conditionst_relaxcanreach 1000 sec (alsoseeEngvold 1980, Sol. Phys. 67, 351)