550 likes | 667 Views
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique. Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]. Plan. Introduction. Diffuse Supernova Neutrino Background (DSNB)
E N D
The shockwave impact upon the Diffuse Supernova Neutrino BackgroundGDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]
Plan • Introduction • Diffuse Supernova Neutrino Background (DSNB) • Motivations • Theoretical Framework • The neutrino self-interaction • The shockwave effects in supernova • Results • on the fluxes • on the events rates • Simplified model to reproduce the shockwave effects
Introduction Theoretical Framework Results Simplified Model Conclusions Introduction Core-collapse supernova explosion 99 % of the energyisreleased by (anti)neutrinos of all flavors (about 1053 ergs for about 10 seconds). neutrinos n n Neutrino-sphere Neutron Star n • The interaction :neutrinos interact each other giving rise to collective effects. • - J. T. Pantaleone, Phys. Rev. D 46 510 (1992). • S. Samuel, Phys. Rev. 48, 1462 (1993). • - G. Sigl and G. G. Raffelt, Nucl. Phys. B 406 423 (1993). • Y. Z. Qian and G. M. Fuller, Phys. Rev. D 51 1479 (1995). • H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, 105014 (2006), 0606616,…
Introduction Theoretical Framework Results Simplified Model Conclusions Introduction matter neutrinos n n Neutrino-sphere Neutron Star n MSW 2. The shockwave effects :The shock will modify the density profile and therefore the MSW resonance. • - R. C. Schirato and G. M. Fuller (2002), 0205390. • - C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), 0302033. • - G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, 033005 (2003), 0304056. • J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, 045023 (2008), 0705.3835. • …
Introduction Theoretical Framework Results Simplified Model Conclusions Diffuse Supernova Neutrino Background (DSNB) Supernova explosion • Neutrinos are emitted with a Fermi-Dirac distribution: • from a localized region. • during a finite time.
Introduction Theoretical Framework Results Simplified Model Conclusions DSNB • Neutrinos are emitted with a Fermi-Dirac distribution: • from all directions (past and invisible SN). • the background is there. • Energies are redshifted due the distance between the SN and Earth: • Much progress have been done on its ingredients such as star formation rate. • S. Ando and K. Sato, New Journal of Physics 6, 170 (2004), 0410061 • L. E. Strigari, J. F. Beacom, T. P. Walker and P. Zhang, JCAP 0504, 017 (2005), 0502150 • C. Lunardini, Astroparticle Physics 26, 190 (2006), 0509233 • H. Yüksel and J. F. Beacom, Phys. Rev. 76, 083007 (2007), 0702613) • …
Introduction Theoretical Framework Results Simplified Model Conclusions Motivations • Numerical simulations are close to the upper limits for relic neutrinos fluxes (Super Kamiokande, LSD). • Detection window for relic neutrinos.
Introduction Theoretical Framework Results Simplified Model Conclusions • Future observatories should be able to observe these fluxes. • MEMPHYS: 440 kTon Water Čerenkov detector. • Main detection channel: • LENA: 44 kTon scintillator detector. • Main detection channel: • GLACIER: 100 kTon liquid argon detector. • Main detection channel: Our aimis to explore: the shockwaveeffects(in the supernova) upon the DSNB. the sensitivity to the oscillations parameters (Hierarchy, q13, d phase).
Introduction Theoretical Framework Results Simplified Model Conclusions Theoretical framework Diffuse Supernova Neutrino Background (DSNB) flux at Earth. • z: redshift • : energy of the neutrino at emission (neutrinosphere) • RSN: core-collapse supernova rate per unit comoving volume • : differential spectra emitted by the supernova Flat universe and ΛCDM model: ΩΛ=0.7 Ωm=0.3 H0=70 km s-1 Mpc-1 Supernova Rate RSN. • Many constraints (Gamma-ray bursts, rest-frame UV, NIR Hα, and FIR/sub-millimeters observations)
Introduction Theoretical Framework Results Simplified Model Conclusions Star Formation Rate (RSF) Star formation rate RSF from [1], where RSF is divided in three parts. with [1] H. Yuksel, M. D. Kistler, J. F. Beacom, and A. M. Hopkins, Astrophys. J. 683, L5 (2008).
Introduction Theoretical Framework Results Simplified Model Conclusions n The propagation in supernovae e- ne,m,t n n Neutron Star n nn interaction MSW effect Vacuum osc
Introduction Theoretical Framework Results Simplified Model Conclusions n The propagation in supernovae e- ne,m,t n n Neutron Star n nn interaction MSW effect Vacuum osc Hierarchy q13
Introduction Theoretical Framework Results Simplified Model Conclusions n The propagation in supernovae e- ne,m,t n SHOCK n Neutron Star n nn interaction MSW effect Vacuum osc Hierarchy q13
Introduction Theoretical Framework Results Simplified Model Conclusions Our simulation We use a 3 flavour code in which we solve the propagation of the amplitudes. We include the interaction (single angle approximation). Inverted hierarchy; 13=9, 23=40 J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.
Introduction Theoretical Framework Results Simplified Model Conclusions Our simulation Inverted hierarchy; 13=9, 23=40 Synchronized region Bipolar oscillations Spectral split region J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.
Introduction Theoretical Framework Results Simplified Model Conclusions Our simulation Inverted hierarchy; 13=9, 23=40 J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.
Introduction Theoretical Framework Results Simplified Model Conclusions Our simulation Inverted hierarchy; 13=9, 23=40 Synchronized region Bipolar oscillations Spectral split region J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.
Introduction Theoretical Framework Results Simplified Model Conclusions Shockwave effects in supernovae Impact on the probability. Evolution of the density profile with time in the MSW region. • 1. Before the shock • (adiabatic propagation). Without . E=20 MeV
Introduction Theoretical Framework Results Simplified Model Conclusions Shockwave effects in supernovae Impact on the probability. Evolution of the density profile with time in the MSW region. • 1. Before the shock • (adiabatic propagation). 2. The shock arrives (non-adiabatic prop.). Without . E=20 MeV
Introduction Theoretical Framework Results Simplified Model Conclusions Shockwave effects in supernovae Impact on the probability. Evolution of the density profile with time in the MSW region. • 1. Before the shock • (adiabatic propagation). 2. The shock arrives (non-adiabatic prop.). 3. Phase effects appear. Without . E=20 MeV
Introduction Theoretical Framework Results Simplified Model Conclusions Shockwave effects in supernovae Impact on the probability. Evolution of the density profile with time in the MSW region. • 1. Before the shock • (adiabatic propagation). 2. The shock arrives (non-adiabatic prop.). 3. Phase effects appear. 4. Post-shock propagation. Without . E=20 MeV
A complete calculation including the shockwave has been realized. Now we’re aiming at: • seeing its impacts on the fluxes and events rates. • exploring the sensitivity to oscillations parameters: • q13, • hierarchy.
Introduction Theoretical Framework Results Simplified Model Conclusions RESULTS: relic electron (anti-)neutrino fluxes Chooz limit Best limit for future facilities For 13 we have two cases: L and S. Results for 13 large are valid for the range: Normal Hierarchy for . Normal Hierarchy for . Inverted Hierarchy for . Inverted Hierarchy for . (MeV-1 cm-2 s-1) (MeV-1 cm-2 s-1) + shock (numerical). + shock. + no shock (analytical). + no shock. 13 Small. 13 Small. exp window (argon detector) exp window (Čerenkov detector)
Introduction Theoretical Framework Results Simplified Model Conclusions Here is plotted the ratio NH IH + shock. + no shock. + shock. + no shock. Shockwave impacts: • 10-20% effect from numerical calculations.
Introduction Theoretical Framework Results Simplified Model Conclusions Here is plotted the ratio NH IH + shock. + no shock. + shock. + no shock. Shockwave impacts: • 10-20% effect from numerical calculations. • reduction of the sensitivity to q13.
Introduction Theoretical Framework Results Simplified Model Conclusions DSNB event rates (per kTon per year) +18% -11% • 10-20% variation only due to the presence of the shock.
Introduction Theoretical Framework Results Simplified Model Conclusions DSNB event rates (per kTon per year) -12% -26% +14% -28% • 10-20% variation only due to the presence of the shock. • The sensitivityto q13 is reduced.
Introduction Theoretical Framework Results Simplified Model Conclusions DSNB event rates (per kTon per year) +0% +0% • 10-20% variation only due to the presence of the shock. • The sensitivityto q13 is reduced. • Loss of the sensitivityto collective effects in the L case.
What have we learnt? • one should include the shockwave in future simulations because its effects are significant. To do so, we propose a simplified model to account for these effects.
Introduction Theoretical Framework Results Simplified Model Conclusions A simplified model to account for the shockwave This model based upon the general behaviour of the shockwave in supernova to calculate the flux. 1. From the numerical evolution of , we extract the 3 times. ts: shock arrives tp: phase effects t∞: post-shock 2. We average the value of in each part because is independent of the energy.
Introduction Theoretical Framework Results Simplified Model Conclusions A simplified model to account for the shockwave This model based upon the general behaviour of the shockwave in supernova to calculate the flux. 1. From the numerical evolution of , we extract the 3 times. ts: shock arrives tp: phase effects t∞: post-shock 2. We average the value of in each part because is independent of the energy.
Introduction Theoretical Framework Results Simplified Model Conclusions A simplified model to account for the shockwave Survival probability evolution with times and energy.
Introduction Theoretical Framework Results Simplified Model Conclusions Times fitting with polynomials functions. The simulations using these functions reproduce the full calculation to less than 2%.
Introduction Theoretical Framework Results Simplified Model Conclusions Conclusions • First complete calculation with interaction and shockwave for relic supernova neutrinos. • The shock affects significantly the DSNB fluxes and event rates. • We propose a model that can be used in future calculations to include shockwave effects. S. Galais, J. Kneller, C. Volpe and J. Gava, Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]
Our predictions for future observatories after 10 years IH NH S. Galais, J. Kneller, C. Volpe and J. Gava, Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]
Simplified model VS Numerical calculation Here is plotted the ratio
Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions Modification of the parameters Variation of the cooling time . Luminosity decreases like: Addition of a temporal offset t to ti. Change the arrival time of the shock. Results are robust to variations of the cooling time and the arrival time.
interaction as a pendulum S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, 105010 (2006), 0608695.
A simplified model to account for the shockwave SHOCK NO SHOCK
A simplified model to account for the shockwave NO SHOCK Nevents(without ) > Nevents(with )
A simplified model to account for the shockwave SHOCK Nevents(with ) increases Nevents(without ) decreases Nevents(with ) Nevents(without )
This model can be used in future calculations of DSNB fluxes and rates to include shockwave effects.
Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions A simplified model to account for the shockwave Survival probability evolution with times and energy.
Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions A simplified model to account for the shockwave Evolution of times with energy. BUT the luminosity decreases So we must do : AND AND
Introduction Recent developments in neutrino propagation in SN: • The interaction. After the explosion of the star, the neutrinos density is so high that neutrinos interact each other giving rise to collective effects like synchronization, bipolar oscillations and spectral split. • - J. T. Pantaleone, Phys. Rev. D 46 510 (1992). • S. Samuel, Phys. Rev. 48, 1462 (1993). • G. Sigl and G. G. Raffelt, Nucl. Phys. B 406 423 (1993). • Y. Z. Qian and G. M. Fuller, Phys. Rev. D 51 1479 (1995). • - S. Pastor, G. G. Raffelt, and D. V. Semikoz, Phys. Rev. 65, 053011 (2002), 0109035. • - H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, 105014 (2006), 0606616. • - S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, 105010 (2006), 0608695. • - A. B. Balantekin and Y. Pehlivan, J. Phys. 34, 47 (2007), 0607527. • - G. G. Raffelt and A. Y. Smirnov, Phys. Rev. 76, 125008 (2007), 0709.4641. • - …
Introduction DSNB Motivations Theoretical Framework Results Conclusions Introduction 2. The shockwave effects. The shock propagates through the matter in which it will modify the density profile and therefore the MSW resonance. • - R. C. Schirato and G. M. Fuller (2002), 0205390. • - C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), 0302033. • - K. Takahashi, K. Sato, H. E. Dalhed, and J. R. Wilson, Astropart. Phys. 20, 189 (2003), 0212195. • - G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, 033005 (2003), 0304056. • - R. Tomas, M. Kachelrieß, G. Raffelt, A. Dighe, H.-T. Janka, and L. Scheck, JCAP 0409, 015 (2004), 0407132. • - G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, JCAP 4, 2 (2005), 0412046. • - S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. D74, 053010 (2006), 0605255. • - B. Dasgupta and A. Dighe, Phys. Rev. 75, 093002 (2007), 0510219. • - S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. 76, 073013 (2007), 0703092. • - J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, 045023 (2008), 0705.3835. • J. P. Kneller and G. C. McLaughlin, Phys. Rev. 73, 056003 (2006), 0509356. • …