1 / 29

Comparison of 2 Population Means

Comparison of 2 Population Means. Goal: To compare 2 populations/treatments wrt a numeric outcome Sampling Design: Independent Samples (Parallel Groups) vs Paired Samples (Crossover Design) Data Structure: Normal vs Non-normal Sample Sizes: Large ( n 1 , n 2 >20) vs Small. Independent Samples.

rinaldo
Download Presentation

Comparison of 2 Population Means

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Comparison of 2 Population Means • Goal: To compare 2 populations/treatments wrt a numeric outcome • Sampling Design: Independent Samples (Parallel Groups) vs Paired Samples (Crossover Design) • Data Structure: Normal vs Non-normal • Sample Sizes: Large (n1,n2>20) vs Small

  2. Independent Samples • Units in the two samples are different • Sample sizes may or may not be equal • Large-sample inference based on Normal Distribution (Central Limit Theorem) • Small-sample inference depends on distribution of individual outcomes (Normal vs non-Normal)

  3. Parameters/Estimates (Independent Samples) • Parameter: • Estimator: • Estimated standard error: • Shape of sampling distribution: • Normal if data are normal • Approximately normal if n1,n2>20 • Non-normal otherwise (typically)

  4. Large-Sample Test of m1-m2 • Null hypothesis: The population means differ by D0 (which is typically 0): • Alternative Hypotheses: • 1-Sided: • 2-Sided: • Test Statistic:

  5. Large-Sample Test of m1-m2 • Decision Rule: • 1-sided alternative • If zobsza ==> Conclude m1-m2 > D0 • If zobs < za ==> Do not reject m1-m2 = D0 • 2-sided alternative • If zobsza/2 ==> Conclude m1-m2 > D0 • If zobs -za/2 ==> Conclude m1-m2 < D0 • If -za/2 < zobs < za/2 ==> Do not reject m1-m2 = D0

  6. Large-Sample Test of m1-m2 • Observed Significance Level (P-Value) • 1-sided alternative • P=P(z zobs) (From the std. Normal distribution) • 2-sided alternative • P=2P(z |zobs| )(From the std. Normal distribution) • If P-Value  a, then reject the null hypothesis

  7. Large-Sample (1-a)100% Confidence Interval for m1-m2 • Confidence Coefficient (1-a) refers to the proportion of times this rule would provide an interval that contains the true parameter value m1-m2 if it were applied over all possible samples • Rule:

  8. Large-Sample (1-a)100% Confidence Interval for m1-m2 • For 95% Confidence Intervals, z.025=1.96 • Confidence Intervals and 2-sided tests give identical conclusions at same a-level: • If entire interval is above D0, conclude m1-m2 > D0 • If entire interval is below D0, conclude m1-m2 < D0 • If interval contains D0, do not reject m1-m2 ≠ D0

  9. Example: Vitamin C for Common Cold • Outcome: Number of Colds During Study Period for Each Student • Group 1: Given Placebo • Group 2: Given Ascorbic Acid (Vitamin C) Source: Pauling (1971)

  10. 2-Sided Test to Compare Groups • H0: m1-m2= 0 (No difference in trt effects) • HA: m1-m2≠ 0 (Difference in trt effects) • Test Statistic: • Decision Rule (a=0.05) • Conclude m1-m2> 0 since zobs = 25.3 > z.025= 1.96

  11. 95% Confidence Interval for m1-m2 • Point Estimate: • Estimated Std. Error: • Critical Value: z.025 = 1.96 • 95% CI: 0.30 ± 1.96(0.0119)  0.30 ± 0.023  (0.277 , 0.323) Entire interval > 0

  12. Small-Sample Test for m1-m2Normal Populations • Case 1: Common Variances (s12 = s22 = s2) • Null Hypothesis: • Alternative Hypotheses: • 1-Sided: • 2-Sided: • Test Statistic:(where Sp2 is a “pooled” estimate of s2)

  13. Small-Sample Test for m1-m2Normal Populations • Decision Rule: (Based on t-distribution with n=n1+n2-2 df) • 1-sided alternative • If tobsta,n ==> Conclude m1-m2 > D0 • If tobs < ta,n ==> Do not reject m1-m2 = D0 • 2-sided alternative • If tobsta/2 ,n ==> Conclude m1-m2 > D0 • If tobs -ta/2,n ==> Conclude m1-m2 < D0 • If -ta/2,n < tobs < ta/2,n ==> Do not reject m1-m2 = D0

  14. Small-Sample Test for m1-m2Normal Populations • Observed Significance Level (P-Value) • Special Tables Needed, Printed by Statistical Software Packages • 1-sided alternative • P=P(t tobs) (From the tn distribution) • 2-sided alternative • P=2P(t  |tobs| )(From the tn distribution) • If P-Value  a, then reject the null hypothesis

  15. Small-Sample (1-a)100% Confidence Interval for m1-m2 - Normal Populations • Confidence Coefficient (1-a) refers to the proportion of times this rule would provide an interval that contains the true parameter value m1-m2 if it were applied over all possible samples • Rule: • Interpretations same as for large-sample CI’s

  16. Small-Sample Inference for m1-m2Normal Populations • Case 2: s12 s22 • Don’t pool variances: • Use “adjusted” degrees of freedom (Satterthwaites’ Approximation) :

  17. Example - Scalp Wound Closure • Groups: Stapling (n1=15) / Suturing (n2=16) • Outcome: Physician Reported VAS Score at 1-Year • Conduct a 2-sided test of whether mean scores differ • Construct a 95% Confidence Interval for true difference Source: Khan, et al (2002)

  18. Example - Scalp Wound Closure H0: m1-m2 = 0 HA: m1-m2 0 (a = 0.05) No significant difference between 2 methods

  19. Small Sample Test to Compare Two Medians - Nonnormal Populations • Two Independent Samples (Parallel Groups) • Procedure (Wilcoxon Rank-Sum Test): • Rank measurements across samples from smallest (1) to largest (n1+n2). Ties take average ranks. • Obtain the rank sum for each group (T1 , T2 ) • 1-sided tests:Conclude HA: M1 > M2 if T2 T0 • 2-sided tests:Conclude HA: M1M2 if min(T1, T2)  T0 • Values of T0 are given in many texts for various sample sizes and significance levels. P-values printed by statistical software packages.

  20. Example - Levocabostine in Renal Patients • 2 Groups: Non-Dialysis/Hemodialysis (n1 = n2 = 6) • Outcome: Levocabastine AUC (1 Outlier/Group) 2-sided Test: Conclude Medians differ if min(T1,T2)  26 Source: Zagornik, et al (1993)

  21. Computer Output - SPSS

  22. Inference Based on Paired Samples (Crossover Designs) • Setting: Each treatment is applied to each subject or pair (preferably in random order) • Data: di is the difference in scores (Trt1-Trt2) for subject (pair) i • Parameter: mD - Population mean difference • Sample Statistics:

  23. Test Concerning mD • Null Hypothesis: H0:mD=D0 (almost always 0) • Alternative Hypotheses: • 1-Sided:HA: mD > D0 • 2-Sided: HA: mDD0 • Test Statistic:

  24. Test Concerning mD • Decision Rule: (Based on t-distribution with n=n-1 df) • 1-sided alternative • If tobsta,n ==> Conclude mD> D0 • If tobs < ta,n ==> Do not reject mD= D0 • 2-sided alternative • If tobsta/2 ,n ==> Conclude mD> D0 • If tobs -ta/2,n ==> Conclude mD< D0 • If -ta/2,n < tobs < ta/2,n ==> Do not reject mD= D0 Confidence Interval for mD

  25. Example - Evaluation of Transdermal Contraceptive Patch In Adolescents • Subjects:Adolescent Females on O.C. who then received Ortho Evra Patch • Response: 5-point scores on ease of use for each type of contraception (1=Strongly Agree) • Data: di = difference (O.C.-EVRA) for subject i • Summary Statistics: Source: Rubinstein, et al (2004)

  26. Example - Evaluation of Transdermal Contraceptive Patch In Adolescents • 2-sided test for differences in ease of use (a=0.05) • H0:mD = 0 HA:mD 0 Conclude Mean Scores are higher for O.C., girls find the Patch easier to use (low scores are better)

  27. Small-Sample Test For Nonnormal Data • Paired Samples (Crossover Design) • Procedure (Wilcoxon Signed-Rank Test) • Compute Differences di (as in the paired t-test) and obtain their absolute values (ignoring 0s) • Rank the observations by |di| (smallest=1), averaging ranks for ties • Compute T+ and T-, the rank sums for the positive and negative differences, respectively • 1-sided tests:Conclude HA: M1 > M2 if T- T0 • 2-sided tests:Conclude HA: M1M2 if min(T+, T-)  T0 • Values of T0 are given in many texts for various sample sizes and significance levels. P-values printed by statistical software packages.

  28. Example - New MRI for 3D Coronary Angiography • Previous vs new Magnetization Prep Schemes (n=7) • Response: Blood/Myocardium Contrast-Noise-Ratio • All Differences are negative, T- = 1+2+…+7 = 28, T+ = 0 • From tables for 2-sided tests, n=7, a=0.05, T0=2 • Since min(0,28)  2, Conclude the scheme means differ Source: Nguyen, et al (2004)

  29. Computer Output - SPSS Note that SPSS is taking NEW-PREVIOUS in top table

More Related