1 / 31

Extending Python with C: Basics and Usage Scenarios

Learn how to integrate C libraries with Python efficiently to improve performance and functionality. Build your own extension module, Vanpy, for powerful automation and data processing. This tutorial covers module initialization, function writing, testing, and best practices for extending Python with C. Dive deep into objects, types, and memory management to create high-performance Python extensions. Explore reference counting rules, realistic examples, and exception handling for seamless integration. Perfect for Python developers seeking advanced integration and performance optimization.

riojas
Download Presentation

Extending Python with C: Basics and Usage Scenarios

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extending Python with C(Part I – the Basics)June 2002 Brian Quinlan brian@sweetapp.com

  2. Why Mess with C? • There is a preexisting library, available in C, that you would like to access from Python (e.g. pyexpat, math, zlib) • Solving the problem in Python would be too CPU or memory inefficient (e.g. Numeric, PIL) • Only way to create new fundament types (doesn’t seem too important to me; save it for another talk)

  3. Jumpin’ In • Create our own extension module containing an eclectic set of functions • We’ll call it: Vanpy • Basic steps: • Do module initialization • Write functions • Write build script • Testing

  4. A module is just a dictionary foo.py magic_number = 5 def divide(x,y): return x / y >>> import foo >>> foo.__dict__ {'__doc__': None, 'magic_number': 5, 'divide': <function divide at 007B1484>, …} >>> foo.__dict__['divide'](8,4) 2

  5. Module Initialization void initVanpy(void) { PyObject * module; module = Py_InitModule3("Vanpy", module_functions, module_doc); PyModule_AddStringConstant(module, "__version__", "0.0.1"); }

  6. A VERY Simple Function static PyObject * is_even(PyObject * self, PyObject * args) { long number; if (!PyArg_ParseTuple(args, "i", &number)) return NULL; return PyBuildValue("i", number % 2 == 0) } static PyMethodDef module_functions[] = { {"is_even", is_even, METH_VARARGS, is_even_doc}, {NULL, NULL} }

  7. A Simple Function static PyObject * classify_characters(PyObject * self, PyObject * args) { char * string; long length; long alpha, other = 0; if (!PyArg_ParseTuple(args, "s#", &string, &length)) return NULL; for (int i = 0; i < length; ++i) { isalnum(string[i]) ? ++alpha : ++other } return PyBuildValue("(iif)", alpha, other, ((float) alpha) / length) }

  8. Objects and Types typedef struct { struct _typeobject *ob_type; int ob_refcnt; /* The rest depends on the type */ } PyObject; typedef struct _typeobject { char *tp_name; /* Stuff to discuss in another talk */ }

  9. 1 Hello a Reference Counting >>> a = “Hello” PyObject * a = Py_BuildValue(“s”, “Hello”)

  10. 1 2 Hello Hello a Reference Counting >>> a = “Hello” PyObject * a = Py_BuildValue(“s”, “Hello”) >>> b = a PyObject * b = a Py_INCREF(b) a b

  11. 1 2 1 Hello Hello Hello a Reference Counting >>> a = “Hello” PyObject * a = Py_BuildValue(“s”, “Hello”) >>> b = a PyObject * b = a Py_INCREF(b) >>> del a Py_DECREF(a) a b b

  12. 1 2 1 0 Hello Hello Hello Hello a Reference Counting >>> a = “Hello” PyObject * a = Py_BuildValue(“s”, “Hello”) >>> b = a PyObject * b = a Py_INCREF(b) >>> del a Py_DECREF(a) >>> del b Py_DECREF(b) a b b

  13. Reference Counting Rules • When returning a PyObject from an extension function or method, always increment the object’s reference count • USUALLY, when calling a Python API function, you need not increment the reference counts of PyObject arguments (only 2 important exceptions) • USUALLY, when a PyObject is returned from a Python API function, you must decrement the object’s reference count when you are done with it (> 4 important exceptions)

  14. A “Realistic” Example static PyObject * password = NULL; static PyObject * set_password(PyObject * self, PyObject * args) { PyObject * new_password; if (!PyArg_ParseTuple(args, "O", &new_password)) return NULL; if (password != NULL) /* or Py_XDECREF(password) */ Py_DECREF(password); password = new_password; Py_INCREF(password); Py_INCREF(Py_None); return Py_None; }

  15. A “Realistic” Example static PyObject * get_password(PyObject * self, PyObject * args) { if (!PyArg_ParseTuple(args, "")) return NULL; if (password == NULL) { Py_INCREF(Py_None); return Py_None; } else { Py_INCREF(password); return password; } }

  16. Exceptions • Each Python thread has 3 exception variables associated with it: • The type of the exception (e.g. ValueError) • The value of the exception (e.g. “0 denominator”) • A traceback object (e.g. file “foo.py”, line 1, in “divide”) def divide(x,y): raise ValueError, “0 denominator” static PyObject * divide(PyObject * self, PyObject * args) { PyErr_SetString(PyExc_ValueError, “0 denominitor”); return NULL; }

  17. Passwords Revised static PyObject * set_password(PyObject * self, PyObject * args) { PyObject * new_password; if (!PyArg_ParseTuple(args, "O", &new_password)) return NULL; if (!PyString_Check(new_password) && !PyUnicode_Check(new_password)) { PyErr_Format(PyExc_TypeError, "expected string or " "Unicode , %80s found", new_password->ob_type->tp_name); return NULL; } ...

  18. More Exceptions • If you want to ignore an error, use PyErr_Clear to clear the current exception • You can check to see if an exception has been set using PyErr_Occurred (this is not usually need since the API return value indicates failure) • It is an error to return NULL without setting an exception

  19. Custom Exceptions I static PyObject * WeatherError; void initVanpy(void) { PyObject * module; PyObject * module_dict; module = Py_InitModule3("Vanpy", module_methods, module_doc); WeatherError = PyErr_NewException("Vanpy.WeatherError", NULL, NULL); module_dict = PyModule_GetDict(module); PyDict_SetItemString( module_dict, "WeatherError", WeatherError); }

  20. Custom Exceptions II static PyObject * goto_beach(PyObject * self, PyObject * args) { if (!PyArg_ParseTuple(args, "")) return NULL; if (rand() % 2) { PyObject * e = Py_BuildValue("(si)", "too cold", 5); if (e == NULL) return NULL; PyErr_SetObject(WeatherError, e); Py_DECREF(e); } else { PyErr_SetString(WeatherError, "too rainy"); } return NULL; }

  21. Building setup.py #!/usr/bin/env python from distutils.core import setup, Extension setup( name = "Vanpy", version = "0.0.1", description = "An eclectic set of functions", author = "Brian Quinlan", author_email = "brian@sweetapp.com", ext_modules = [ Extension("Vanpy", ["Vanpy.c"]) ] )

  22. Python API organization • Exception handling • Memory Management • Threads • Utilities • OS Utilities • Process Control • Importing Modules • Data Marshalling • Parsing Arguments & Building Values • Abstract Object Support • Concrete Object Support

  23. Abstract Object Support • Applies to classes of objects, not specific types • Divided into protocols: • Object • Number • Sequence • Mapping • Iterator • Buffer

  24. Object Protocol A sampling of functions in the object protocol: int PyObject_HasAttrString(PyObject *o, char *attr_name) int PyObject_Cmp(PyObject *o1, PyObject *o2, int *result) PyObject* PyObject_Repr(PyObject *o) PyObject* PyObject_Str(PyObject *o) int PyObject_IsInstance(PyObject *inst, PyObject *cls) PyObject* PyObject_CallFunction(PyObject *callable, char *format, ...) PyObject* PyObject_CallMethod(PyObject *o, char *method, char *format, ...) int PyObject_IsTrue(PyObject *o)

  25. Number Protocol A sampling of functions in the number protocol: int PyNumber_Check(PyObject *o) PyObject* PyNumber_Add(PyObject *o1, PyObject *o2) PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2) PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2) PyObject* PyNumber_Negative(PyObject *o) PyObject* PyNumber_Absolute(PyObject *o) PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2) PyObject* PyNumber_And(PyObject *o1, PyObject *o2) PyObject* PyNumber_Int(PyObject *o) PyObject* PyNumber_Long(PyObject *o) PyObject* PyNumber_Float(PyObject *o)

  26. Sequence Protocol A sampling of functions in the sequence protocol: int PySequence_Check(PyObject *o) int PySequence_Length(PyObject *o) PyObject* PySequence_Repeat(PyObject *o, int count) PyObject* PySequence_GetItem(PyObject *o, int i) PyObject* PySequence_GetSlice(PyObject *o, int i1, int i2) int PySequence_SetItem(PyObject *o, int i, PyObject *v) int PySequence_DelItem(PyObject *o, int i) PyObject* PySequence_Tuple(PyObject *o) int PySequence_Contains(PyObject *o, PyObject *value) int PySequence_Count(PyObject *o, PyObject *value)

  27. Concrete Object Support • Applies to specific object types • Different set of functions for every built-in Python type • There any many Python object types: plain int, long int, float, complex, string, unicode, buffer, tuple, list, dictionary, file, instance, method, module, iterator, slice, weak reference, etc. • Reference counting rules are less intuitive

  28. Int Objects This is the complete list of int functions: int PyInt_Check(PyObject* o) int PyInt_CheckExact(PyObject* o) PyObject* PyInt_FromLong(long ival) long PyInt_AsLong(PyObject *io) long PyInt_AS_LONG(PyObject *io) long PyInt_GetMax()

  29. String Objects A sampling of string functions: int PyString_Check(PyObject *o) int PyString_CheckExact(PyObject *o) PyObject* PyString_FromString(const char *v) PyObject* PyString_FromStringAndSize(const char *v, int len) PyObject* PyString_FromFormat(const char *format, ...) PyObject* PyString_FromFormatV(const char *format, va_list vargs) int PyString_Size(PyObject *string) int PyString_GET_SIZE(PyObject *string) char* PyString_AsString(PyObject *string) char* PyString_AS_STRING(PyObject *string) void PyString_Concat(PyObject **string, PyObject *newpart)

  30. List Objects This is the complete list of list functions: int PyList_Check(PyObject *p) PyObject* PyList_New(int len) int PyList_Size(PyObject *list) int PyList_GET_SIZE(PyObject *list) PyObject* PyList_GetItem(PyObject *list, int index) PyObject* PyList_GET_ITEM(PyObject *list, int i) int PyList_SetItem(PyObject *list, int index, PyObject *item) void PyList_SET_ITEM(PyObject *list, int i, PyObject *o) int PyList_Insert(PyObject *list, int index, PyObject *item) int PyList_Append(PyObject *list, PyObject *item) PyObject* PyList_GetSlice(PyObject *list, int low, int high) int PyList_SetSlice(PyObject *list, int low, int high, PyObject *itemlist) int PyList_Sort(PyObject *list)

  31. Helpful Technologies • SWIG/SIP - generate C/C++ interface code for Python • Boost Python - an interface generator for wrapping C++ classes with a Python interface • CXX - C++ wrapper around the Python API • Pyrex - a language for writing Python extension modules • Pyfort - a wrapper generator for interfacing Fortran with Python • PyInline/Weave – embed C/C++/Perl code inside your Python script

More Related