460 likes | 473 Views
Explore the EMBH model in the study of Gamma-Ray Bursts (GRBs) - a discovery leading to significant breakthroughs in astrophysics and cosmology. Delve into the evolution of plasma and energy emission, cosmological distances, and more through detailed paradigms and assumptions.
E N D
Le spectre des GRBs dans le modèle EMBH Pascal Chardonnet LAPTH + Collaboration Roma La Sapienza POLAR - January, 18 2008
Discovery of GRBs • GRBs unknown until the end of ‘60 neither predicted by astrophysical or cosmological models • Discovery by chance by Vela satellite (1973) • I revolution (BATSE satellite, ‘90): isotropy of spatial distribution • II revolution (BeppoSAX, 1997): • discovery of afterglow X • cosmological distance (z order of 1)
The EMBH model 1) Spherical symmetry for all the phases. 2) Magnetohydrodynamics and pair equations for the evolution of the plasma in the optically thick phase. Fully radiative condition for the energy emission in the afterglow. 3) nism = 1 particle/cm3 i.e. a constant density interstellar medium. - “Relative Space Time Transformations” (RSTT) paradigm(Ruffini et al., ApJ 555, L107, 2001) - “Interpretation of the Burst Structure” (IBS) paradigm(Ruffini et al., ApJ 555, L113, 2001) - “GRB-supernova Time Sequence” (GSTS) paradigm(Ruffini et al., ApJ 555, L117, 2001)
Assumptions • Spherical symmetry • “Fully radiative” condition • Temporal variability of light curve due to • inhomogeneity of interstellar medium • Thermal distribution of energy in comoving frame
Parameters of the model • Edya is the total energy emitted by source • B= MBc2/Edya parametrizes baryonic matter protostellar not collapsed • R = Aeff/Atotindicates the porosity of interstellar medium • <nism> is the particle number density of interstellar medium Edya B
Temporal structure of GRB Collision with baryonic remnant Conversion of internal energy in kinetic energy Increase of opacity of pulse Edya Short GRB Long GRB
The bolometric luminosityof the source Where: De = internal energy developed in the ABM - ISM collision. L = g (1 - (v/c) cosJ) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
Bolometric light curve Edya= 4.83 ´1053erg B = 3.0 ´10-3
GRB 991216 BATSE noise threshold Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2001b, ApJ, 555, L113
B C D A GRB 991216
B C D A Temporal substructure of peak
Emitted luminosity Thermaldistribution of energy in comoving system: Tarris the temperature of radiation emittedby dS and observed on the Earth
Luminosity and spectrum:GRB991216 Peak Afterglow c2 = 0.497 GRB 980425, 030329, 031203, 980519, 970228,…
Spectral evolution Hard-to-Soft evolution Time integrated spectrum Non-thermal observed spectrum GRB 980425, 030329, 031203, 980519, 970228,…
Swift era Model verified in a precedently unobserved temporal window (102 -104 sec) Structure of light curve afterglow simply explained the claimed breaks in light curves GRB050315
The model presented builts the whole temporal evolution of the GRB, from the progenitor to the non-relativistic phase of the afterglow. • Interpretation of temporal structure of GRB: P-GRB e E-APE. • The temporal variability of light curve traces the inomogeneities of ISM. • Afterglow observations are compatible with thermal spectrum in pulse comoving system. • No polarization predicted Conclusions
Equations for afterglow In the laboratory system with
Arrival time (ta) vs. emission time (t) Power-law slope in the afterglow: Approximate ta computation: Exact ta computation: The observed one is:-1.616 ± 0.067 (Halpern et al, 2000) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2002a, A&A, submitted to
Power law of Lorentz g factor (I) Inelasticcollision of expanding shell with an infinitesimally thick shell of ISM of mass dm at rest. Energy-momentum conservation and increment of mass: from 1) 3) g0 >> g>> 1
Power law of Lorentz g factor (II) B=10-3 • For g0 ~200, power law different from the predicted one (g0 >> g >> 1 not satisfied). • The predicted power laws in limits adiabatic and fully radiative are reached only when g tends to infinity and only in a limited region. B=10-6
Prototype GRB 991216 • One of the most energetic GRB ever observd: Etot@1053ergs, z = 1.0. • Details on temporal structure by BATSE and on afterglow by satellites R-XTE • and Chandra (Iron lines). • Power law index for afterglow: n=-1.616 ± 0.067.
GRB 991216 - IBS paradigm BATSE noise threshold Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2001b, ApJ, 555, L113
GRB 980425 - SN1998bw:A newly formed neutron star (Pian) The newly formed neutron star:
The ISM inhomogeneity “mask” <nism> = 1 particle/cm3 i.e. an interstellar medium with variable density but average density of 1 particle/cm3. g = 139.9 g = 200.5 DR= 1015 cm g = 265.4 g = 303.8 g = 57.23 g = 56.24
Visible Invisible Visible Invisible The ABM pulse visible area
The observed luminosity:two different time scales • t is the photon emission time from the source. • tad is the photon arrival time at the detector. Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001)
Arrival time ta vs. emission time t Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001)Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
Arrival time ta vs. emission time t Afterglow power-law slope for GRB 991216: Approximate ta computation: Exact ta computation: Observed slope:-1.616 ± 0.067 (Halpern et al, 2000) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
Angular dispersion Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
The Equitemporal Surfaces Constant speed (r = vt): Ellipsoids of constant eccentricity v/c Numericalintegration General case: Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
Visible Invisible Visible Invisible ABM Pulse visible area Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
The bolometric luminosityof the source Where: De = internal energy developed in the ABM - ISM collision. L = g (1 - (v/c) cosJ) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
t t D t a D t a D t + t 0 D t + t 0 1 £ g £ 310 g @ 4 t t R R 0 r r 0 Arrival time ta vs. emission time t Rees, Nature, 211, 468, (1966) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
Relativistic contractionor classical Doppler effect? Doppler contraction: where: - g is the gamma Lorentz factor of the moving source,-T0 is the period of the radiation measured in the comoving frame,-T is the period of the radiation measured by an observer at rest. The arrival time relation: is then just a classical Doppler contraction and has nothing to do with special relativistic effects.
The Dyadosphere The initial conditions in the EMBH model: +Q -Q Preparata, Ruffini, Xue, 1998, A&A 338, L87 see also Ruffini, Vitagliano, Xue, in preparation + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - e+e- plasma
R. Ruffini, J.A. Wheeler, “Introducing the Black Hole”, Physics Today, January 1971
Theoretical background of the EMBH model + - Heisenberg, Euler, 1935 Schwinger, 1951 Christodoulou, Ruffini, 1971 Damour & Ruffini 1974 • In a Kerr-Newmann black hole vacuum polarization process occurs if3.2MSun£MBH£ 7.2·106MSun • Maximum energy extractable 1.8·1054 (MBH/MSun) ergs • “…naturally leads to a most simple model for the explanation of the recently discovered g-rays bursts”
Theoretical model GRBs originate from the vacuum polarization processálaHeisenberg-Euler-Schwinger in the space-time surrounding a non-rotating electromagnetic black hole Collision PEMB pulse ABM pulse PEM pulse
Observations • Irregularity of temporal profile of single event and variabilityof temporal profile between different events • Bimodaldistribution of duration • Observedspectrum non-thermal..
The g Lorentz factor Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L113, (2001)Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
t t D D t t a a D D t t + + t t 0 0 g @ 4 t t R R D D r 0 0 Arrival time ta vs. emission time t Dta = Dt Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
GRB 991216 BATSE noise threshold
Invisible region Invisible region The “Equitemporal” surfaces