1 / 11

Chapter 10 Analog Systems

Chapter 10 Analog Systems. Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock. Amplifier Biasing for Linear Operation. V I = dc value of v I , v i = time-varying component

rlima
Download Presentation

Chapter 10 Analog Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 10Analog Systems Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Microelectronic Circuit Design, 3E McGraw-Hill

  2. Amplifier Biasing for Linear Operation VI = dc value of vI, vi = time-varying component For linear amplification - vI must be biased in desired region of output characteristic by VI. If slope of output characteristic is positive, input and output are in phase (amplifier is non-inverting). If slope of output characteristic is negative, input and output signals are 1800 out of phase (amplifier is inverting). Microelectronic Circuit Design, 3E McGraw-Hill

  3. Amplifier Biasing for Linear Operation (cont.) Voltage gain depends on the choice of bias point. Eg: if amplifier is biased at VI = 0.5 V, voltage gain will be +40 for input signals satisfying If input exceeds this value, output is distorted due to change in amplifier slope. Microelectronic Circuit Design, 3E McGraw-Hill

  4. Amplifier Biasing for Linear Operation (cont.) Output signals for 1 kHz sinusoidal input signal of amplitude 50 mV biased at VI = 0.3 V and VI = 0.5V: For VI = 0.3V: Gain is 20; output varies about dc level of 4 V. For VI = 0.5V: Gain is 40; output varies about dc level of 10 V. Microelectronic Circuit Design, 3E McGraw-Hill

  5. Distortion in Amplifiers • Different gains for positive and negative values of input cause distortion in output. • Total Harmonic Distortion (THD) is a measure of signal distortion that compares undesired harmonic content of a signal to the desired component. Microelectronic Circuit Design, 3E McGraw-Hill

  6. Total Harmonic Distortion dc desired output 2nd harmonic distortion 3rd harmonic distortion Numerator = rms amplitude of distortion terms, Denominator = desired component Microelectronic Circuit Design, 3E McGraw-Hill

  7. Amplifier Transfer Functions Av(s) = Frequency-dependent voltage gain Vo(s) and Vs(s) = Laplace Transforms of input and output voltages of amplifier, (In factorized form) (-z1, -z2,…-zm) = zeros (frequencies for which transfer function is zero) (-p1, -p2,…-pm) = poles (frequencies for which transfer function is infinite) (In polar form) Bode plots display magnitude of the transfer function in dB and the phase in degrees (or radians) on a logarithmic frequency scale.. Microelectronic Circuit Design, 3E McGraw-Hill

  8. Low-Pass Amplifier: Description • Amplifies signals over a range of frequencies including dc. • Most operational amplifiers are designed as low pass amplifiers. • Simplest (single-pole) low-pass amplifier is described by Ao = low-frequency gain or mid-band gain wH = upper cutoff frequency or upper half-power point of amplifier. Microelectronic Circuit Design, 3E McGraw-Hill

  9. Low-pass Amplifier: Magnitude Response • Gain is unity (0 dB) atw = AowH = wT called gain-bandwidth product • Bandwidth (frequency range with constant amplification ) = wH (rad/s) Low-pass filter symbol Microelectronic Circuit Design, 3E McGraw-Hill

  10. Low-pass Amplifier: Phase Response If Ao positive: phase angle = 00 If Ao negative: phase angle = 1800 At wC: phase = 450 One decade below wC: phase = 5.70 One decade above wC: phase = 84.30 Two decades below wC: phase = 00 Two decades above wC: phase = 900 Microelectronic Circuit Design, 3E McGraw-Hill

  11. RC Low-pass Filter Problem: Find voltage transfer function Approach: Impedance of the where capacitor is 1/sC, use voltage division Microelectronic Circuit Design, 3E McGraw-Hill

More Related