1 / 33

Gas Pixel Detector for X-ray Observation

This presentation discusses the gas pixel detector for x-ray observation, including the TimePix readout chip, micro-pattern gaseous detector TPC, and integrated Micromegas. It also explores its application for x-ray observations and the measurement of primary statistics in gas.

roark
Download Presentation

Gas Pixel Detector for X-ray Observation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gas pixel detector for x-ray observation David Attié1 M. Campbell3, M. Chefdeville1,2, P. Colas1, E. Delagnes1, Y. Giomataris1, H. van der Graaf2, X. Llopart3, J. Timmermans2, J. Visschers2, 1. 2. 3. Astrophysics Detector Workshop – Nice – November 18th, 2008

  2. Outline Introduction: motivations for a gas pixel detector • The TimePix readout chip • Description • TimePix Syncronization Logic • Micro Pattern Gaseous Detector TPC • Description of Micromegas • Integrated Micromegas: InGrid • Micro-TPC • Application for x-ray observations • Measurement of primary statistics in gas • TPC-based polarimeter Conclusion Astrophysics Detector Workshop – Nice – November 18th, 2008

  3. Motivations for pixelized gaseous detector • Gaseous detector advantages: • 2D/3D imaging • Low occupancy and low radiation length X0  mean free path could be important • Spatial resolution: • σxy limited by the pad size (pitch/√12) • narrow charge distribution (RMS ~15 μm) • High granularity: • δ-ray recognition/suppression in TPC • possibility to count primary clusters & electrons • direction & energy of tracks: low-energy e- for X-ray polarimetry ALICE TPC simulations Bellazzini et al. NIMA 560, 2006, 425  Digital TPC as a x-ray polarimeter for astrophysics observations Astrophysics Detector Workshop – Nice – November 18th, 2008

  4. Astronomical x-ray polarimetry • Interpretations based on spectral and timing data are often ambiguous; polarization measurements will resolve the ambiguities. • Polarization of astrophysical sources may give signature of: • Emission processes: cyclotron, synchrotron, non thermal bremmstrahlung(Westfold, 1959; Gnedin & Sunyaev, 1974; Rees, 1975) • Scattering on aspherical accreting plasmas: disks, blobs, columns • (Rees, 1975; Sunyaev & Titarchuk, 1985; Mészáros, P. et al. 1988) • Vacuum polarization and birefringence through extreme magnetic fields • (Gnedin et al., 1978; Ventura, 1979; Mészáros & Ventura, 1979) • Geometry of x-ray sources and physical properties of emission sites • magnetic field strength and direction in compacts objects • environment (disk or spherical) in supermassive black holes (AGN) • accretion geometry • Cosmic ray acceleration in supernova remnants Astrophysics Detector Workshop – Nice – November 18th, 2008

  5. Description of the TimePix chip 55 mm m μ 14080 m (pixel array) 55 4 4 16120 m 55 mm 2 2 3 3 1 1 5 5 55 μ m 14111 m • Chip (CMOS ASIC) upgraded in the EUDET framework for high energy physics from the Medipix2 chip developed first for medical applications • IBM technology 0.25 μm on 6 layers • Characteristics: • surface: 1.4 x 1.6 cm2 • matrix of 256 x 256 • pixel size: 55 x 55 μm2 • For each pixel: • preamp/shaper • threshold discriminator • register for configuration • TimePix synchronization logic • 14-bit counter • Noise: ~ 650 e- • 70 e- per pixel, Cin ~ 15 fF Pixel Synchronization Logic Interface 1 2 3 4 5 Configuration latches Preamp/shaper Counter THL disc. Llopart et al., NIMA 581 (2007) 361 Astrophysics Detector Workshop – Nice – November 18th, 2008

  6. TimePix Synchronization Logic Control Medipix Mode Timepix Mode TOT Mode 10 ns not detected detected Summed charge • Each pixel can be configured independently in 5 different modes • Internal clock up to 100 MHz 100 MHz Internal Shutter Shutter Internal Clock Digital Signal Analog Signal Astrophysics Detector Workshop – Nice – November 18th, 2008

  7. Detectors using TimePix chip + - + + - - Solid detector Gas detector x, y, F(x, y)  2D x, y, z(t), E(x,y)  3D Drift cathode grid X-ray source Ionizing particle Gas volume Semiconductor sensor Flip-chip bump bonding connections Amplification System (MPGD) TimePix chip Medipix2/TimePix chip Astrophysics Detector Workshop – Nice – November 18th, 2008

  8. InGrid: Integrated Micromegas Grid • Micromegas is a Micro Pattern Gaseous Detector formed by a metallic micromesh (hole pitch 70 μm) sustained by 50 μm pillars above the anode (pads) • Multiplication between anode and mesh • Gain is a function of the electric field and the gap up to 105 • Integrate Micromegas detector directly on a CMOS chip by post-processing but need resistive layer protection: ~20 μm of amorphous silicon (a-Si:H) e- ~ 1 kV/cm NIKHEF(MESA+, Univ. Twente) CERN ~ 80 kV/cm Resistive layer for protection of a-Si:H IMT Neuchatel pad PCB Astrophysics Detector Workshop – Nice – November 18th, 2008

  9. InGrid: energy resolution • Energy resolution depends on the grid geometry • Grids can be very flat • best energy resolution achieved:  13.6 % with 55Fe source in P10 • removal of Kβ 6.5 keV line:  11.7 % @ 5.9 keV in P10 • Hole pitch down to 14 μm with various diameters • Different gaps (35-75 μm) • Until now: grid is 1 μm of Al but can also be increased to 5 μm by electrolysis to be more robust Escape peak Kα 13.6 % FWHM Escape peak Kβ Gap: 50 μm; Hole picth: 32 μm,Ø: 14 μm 11.7% FWHM Kβ-filtered spectrum with Cr foil Astrophysics Detector Workshop – Nice – November 18th, 2008

  10. Micro-TPC using TimePix/Micromegas • Micro-TPC with a 6 cm height field cage • Size : 4 cm × 5 cm × 8 cm Windows for X-ray sources Cover Windows for β sources 6 cm Field cage Micromegas mesh • Gas mixture at atmospheric pressure TimePix chip Astrophysics Detector Workshop – Nice – November 18th, 2008

  11. Micro-TPC TimePix/Micromegas • TimePix chip + SiProt 20 μm + Micromegas • 55Fe source • Ar/Iso (95:5) • Time mode • z = 25 mm • Vmesh = -340 V • tshutter = 283 μs Astrophysics Detector Workshop – Nice – November 18th, 2008

  12. Measurements of primary statistics in gases • Diffusion σt should be big enough to separate electrons: e- per pixel ~ 1 • Study of primary electrons and Fano factor F using RMS • Spectrum of number of electrons for 2000 events: • F: Fano factor • √b: single e- gain distribution rms (%) • ε: detection efficiency • N: number of primary e- • Sensitive to Kα & Kβ lines • FWHM = 9,5 % • 5.9 keV line at ~ 226 e- TimePix+Ingrid+ 15 μm SiProt Argon + 5% Isobutane Astrophysics Detector Workshop – Nice – November 18th, 2008

  13. Polarimetry using photoelectric absorption • Ideal polarimeter is a track imager with: resolution elements < mean free path of photoelectron E • Differential photoelectron cross-section emitted from the atomic s-orbital in non relativist limit: • θ polar angle, φ azimutal angle • Emission angles are modulated by the polarization P X-ray Photoelectron θ Auger electron φ maximum in the plane x-ray direction Nmax Nmin Astrophysics Detector Workshop – Nice – November 18th, 2008

  14. Prototype TPC polarimeter using TimePix/Micromegas • TimePix chip + SiProt 20 μm + Micromegas • 55Fe source • Ne/Iso (90:10) • TOT mode • z < 5 mm • Vmesh = -450 V • tshutter = 0.2 s Astrophysics Detector Workshop – Nice – November 18th, 2008

  15. Prototype TPC polarimeter using TimePix/Micromegas Photoelection + eauger track in Neon+10 Isobutane • Identify the cluster • TimePix chip + SiProt 20 μm + Micromegas • 55Fe source • Ne/Iso (90:10) • TOT mode • z < 5 mm • Vmesh = -450 V • tshutter = 0.2 s • Determination of the polarization • Barycentre • Principal axis Reconstructed absorption point Reconstructed photoemission direction with identification of the absorption point and the removal of the final part of the track φ φ photoemission angle • Low Ek-edge of Neon  eauger are • isotropically emitted with a small • fraction of the photon energy • In low Z gas mixture tracks are • longer so angular reconstruction is easier Astrophysics Detector Workshop – Nice – November 18th, 2008

  16. Prototype TPC polarimeter using TimePix/Micromegas • Double structure operated for the first time (He/Iso, 80:20, 55Fe, 30 mm gap) • No protection layer  chip survived ~5 hours, protection layer still necessary • Recent test of silicon nitride (Si3N4) protection layer of 7.5 μm very promising 450V 100V NIKHEF(MESA+, Univ. Twente) 55Fe in He/Iso in TOT mode 210Po in He/Iso in TOT mode Astrophysics Detector Workshop – Nice – November 18th, 2008

  17. Example of TPC for x-ray polarimeter y x Photoelectron z Readout Strips 130 μm pitch Drift Electrode GEM like Black et al. NIMA 581, 2007, 755 Gas mixture: Neon/DME 50:50 at 0,6 atm y e- Drift x(t) Differentiated Waveforms Digitized Waveforms Image X-ray Trigger Polarized 6.4 keV photons 2O mm • Uniform response • Modulation (P ~50 %) • No false modulation • An encouraging start • Quantum efficiency ~ 6% Counts Unpolarized 5.9 keV photons 0o 45o 90o Photoemission electron angle (degree) Astrophysics Detector Workshop – Nice – November 18th, 2008

  18. Conclusions • TimePix chip/Micromegas + SiProt: demonstrator for the digital TPC  useful tool for x-ray observations (polarimeter for space telescope: IXO?) • Identification of the photoelectron angle by imaging the photoelectron trackis very promising for soft x-ray polarimetry ( 2 keV < Eγ < 50 keV) with a quantum efficiency up to a few percent. • Need a polarized source and a biggest “Polarimeter/Timepix” collaboration • Ultimate resolution for a TPC thanks to the single electron sensibility: Micro-TPC is an excellent tool to characterize photon absorption in gases • Still some technologic issues: • Self triggering capability • How to improve the readout of the chips (speed and larger surface) ? - through Si connectivity: avoiding bonding wires - fast readout technology (~5 Gb/s) • Sealed detector Astrophysics Detector Workshop – Nice – November 18th, 2008

  19. The TimePix collaboration • NIKHEF Harry van der Graaf • Martin Fransen • Jan Timmermans • Jan Visschers • Sipho van der Putten • Arno Aarts • Saclay CEA/DAPNIA David Attié • Paul Colas • Esther Ferrer-Ribas • Arnaud Giganon • Yannis Giomataris • Marc Riallot • Univ. Twente/Mesa+ Jurriaan Schmitz • Victor Blanco Carballo • Cora Salm • Sander Smits • FREIBURGA. Bamberger • K. Desch • U. Renz • M. Titov • N. Vlasov • A. Zwerger • P. Wienemann • CERN Erik Heijne • Xavier Llopart • Medipix Consortium β- from 90Sr source in He/Isobutane 80:20 Thank you for your attention Astrophysics Detector Workshop – Nice – November 18th, 2008

  20. Backup slides Astrophysics Detector Workshop – Nice – November 18th, 2008

  21. Micromegas & GEMs (MPGD) 50 µm 40 kV/cm ~1000 µm 1 kV/cm ~50 µm 80 kV/cm Technology choice for TPC readout: Micro Pattern Gaseous Detector • better ageing properties • easier to manufacture • more robust than wires • no E×B effect • fast signal & high gain • low ion backdrift GEM Micromegas • MICROMEsh GAseous Structure(Y. Giomataris et al., 1996) • metallic micromesh (typical pitch 50μm) • sustained by 50μm pillars, multiplication between anode and mesh, high gain • Gas Electron Multiplier (F. Sauli, 1997) • 2 copper foils separated by kapton • multiplication takes place in holes • low gain • Gas Electron Multiplier (F. Sauli, 1997) • 2 copper foils separated by kapton • multiplication takes place in holes • use of 2 or 3 stages Avalanche Astrophysics Detector Workshop – Nice – November 18th, 2008

  22. Micromegas & GEMs (MPGD) Technology choice for TPC readout: Micro Pattern Gaseous Detector • better ageing properties • easier to manufacture • more robust than wires • no E×B effect • fast signal & high gain • low ion backdrift GEM Micromegas • simplicity • single stage of amplification • natural ion feedback suppression • discharges non destructive • 2- or 3- stage amplification • easy operation • low field above the electronics • low discharge probability Astrophysics Detector Workshop – Nice – November 18th, 2008

  23. Mixtures of gases containing argon: gain curves iC4H10 CO2, CH4 C2H6 Micromegas Mesh : 50 mm gap of 10x10 cm² size Astrophysics Detector Workshop – Nice – November 18th, 2008

  24. Readout system for Medipix2/TimePix chip • MUROSv2.1: • Serial readout • VHDCI cable of length <3m • read 8 chips in mosaic • tunable clock [30-200MHz] • ~40fps @160MHz http://www.nikhef.nl/pub/experiments/medipix/muros.html • USB: • Serial readout • ~5 fps@20MHz http://www.utef.cvut.cz/medipix/usb/usb.html • Mosaic achitecture: Astrophysics Detector Workshop – Nice – November 18th, 2008

  25. TimePix chip schematic Previous Pixel For each pixel Ref_Clkb Clk_Read Mux 4 bits thr Adj Mask Mux Preamp Input Disc 14 bits Shift Register Shutter THR Timepix Synchronization Logic Shutter_int Ctest P0 Conf Testbit Polarity P1 8 bits configuration Test Input Ovf Control Ref_Clk Clk_Read Next Pixel Digital part Analogic part Astrophysics Detector Workshop – Nice – November 18th, 2008

  26. TimePix chip architecture • 36×106 transistors on 6 layers (~550 transistors/pixel  13.5 μW) • Reference clock per pixel up to 100 MHz • Characteristics: • analog power: 440 mW • digital power (Ref_Clk = 80 MHz): 450 mW • serial readout (@ 100 MHz): 9.17 ms • parallel readout (@ 100 MHz): 287 μs • Pixel modes: • masked • counting mode (Medipix, Timepix-1h) • Time-Over-Threshold  “charge” info • Common stop  “time” info Astrophysics Detector Workshop – Nice – November 18th, 2008

  27. First TimePix Quad 1 2 3 • First Timepix quad • + 300 μm Si crystal • Medipix mode counting • 55Fe source • tshutter =40 s • Time mode • 90Sr source • tshutter = 237 μs • Time-Over-Threshold mode • 241Am source • tshutter = 5 s Llopart & Campbell, CERN Astrophysics Detector Workshop – Nice – November 18th, 2008

  28. TimePix & GEMs • Cartes de 181x181 en mode Time & et en TOT • Fournit les informations charge & temps en même temps • Fort potentiel pour la séparation de traces Freiburg (+Bonn) Ar CO2 70/30 He CO2 70/30 Astrophysics Detector Workshop – Nice – November 18th, 2008

  29. TimePix using Micromegas • Timepix chip + Micromegas on frame: Moiré effects + pillars • Timepix chip + SiProt + Ingrid: “Uniform” Resistive layer for protection MESA+ IMT Neuchatel “counting” mode Astrophysics Detector Workshop – Nice – November 18th, 2008

  30. Micro-TPC TimePix/Micromegas • TimePix chip + SiProt 20 μm + Micromegas • 90Sr source • Ar  He • Time mode • z ~ 40 mm • Vmesh = -340 V • tshutter = 180 μs spark-proof ! Astrophysics Detector Workshop – Nice – November 18th, 2008

  31. Micro-TPC TimePix/Micromegas • TimePix chip + SiProt 20 μm + Micromegas • 90Sr source • Ar/Iso (95:5) • Time mode • z ~ 40 mm • Vmesh = -340 V • tshutter = 180 μs Astrophysics Detector Workshop – Nice – November 18th, 2008

  32. Gas mixture containing Neon http://www-cxro.lbl.gov Astrophysics Detector Workshop – Nice – November 18th, 2008

  33. Simulated quality factor Bellazzini et al., NIMA 572 (2007) 167 Astrophysics Detector Workshop – Nice – November 18th, 2008

More Related