1 / 9

實驗 Data 的 表示 要有 統計的基礎 : Examples: 高 = Z +/_  Z(where  Z = 幾次量測後 ,1 個 標準差大小 )

實驗 Data 的 表示 要有 統計的基礎 : Examples: 高 = Z +/_  Z(where  Z = 幾次量測後 ,1 個 標準差大小 ) 體積 = V +/_ V ,where V 由 長寬高之 誤差傳遞 , 請看 page 4 介紹 , 而得 : V= ( AVE of 長 ) X (AVE of 寬 ) X (AVE of 高 ) V= V x (( 1STD of 長 ) 2 / (AVE of 長 ) 2 + (1STD of 寬 ) 2 / (AVE of 寬 ) 2 +

roary-diaz
Download Presentation

實驗 Data 的 表示 要有 統計的基礎 : Examples: 高 = Z +/_  Z(where  Z = 幾次量測後 ,1 個 標準差大小 )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 實驗 Data 的表示 要有 統計的基礎: Examples: 高= Z+/_ Z(where  Z =幾次量測後,1 個 標準差大小) 體積= V +/_V ,where V 由 長寬高之 誤差傳遞,請看 page 4 介紹, 而得: V= (AVE of長)X (AVE of寬) X (AVE of高) V= V x (( 1STD of 長)2 / (AVE of長)2 + (1STD of 寬)2 / (AVE of寬)2 + (1STD of 高)2 / (AVE of高)2 ) ) 1/2 NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  2. 記數據的方法: (a.bcd ± e ) x 10 n (單位) 誤差項 e: 取 1-2 位有效數字: 1 開頭者取 2 位有效數字, other than 1 開頭者, 誤差項取 1 位有效數字 Like ( 29.00 ± 0.12) x 10 1 CM ( 56.0 ± 0.3) x 10 1 CM 有效數字: 有效數字 = 精確值 +  一位估計值 1.各別數字處理:Rounding answers properly (四捨五入法) 1.475 in 3 digits: 1.48 (逢單則入) 1.485 in 3 digits: 1.48 (逢雙則捨) NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  3. 有效數字: 2.加、減、乘、除 時的 有效數字處理 09.9???? +00.3163? 10.2???? = 10.2 ? ? :估計不準位 3.413? x 2.3? can be written in long hand as 3.413? x 2.3? . ????? 10239? +6826? . 7.8????? = 7.8? Short Rule: NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  4. 誤差傳遞: (a) Addition and Subtraction: z = x + y or z = x - y Average deviationsz = |x| + |y| in both cases. z = |x| + |y| Using simpler average errors Using standard deviations (b) Multiplication and Division: z = x y or z = x/y z +z = (x +x)(y +y) = xy + x y + y x + x y z = y x + x y ( ????) Using simpler average errors Using standard deviations NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  5. 誤差傳遞: Example: w = (4.52 ± 0.02) cm, x = (2.0 ± 0.2) cm. Find z = w x and its uncertainty. z = w x = (4.52) (2.0) = 9.04 cm2 So z = 0.1044 (9.04 cm2) = 0.944 which we round to0.9 cm2, z = (9.0 ± 0.9) cm2. Using Eq. 2b we getz = 0.905 cm2 andz = (9.0 ± 0.9) cm2.The uncertainty is rounded to one significant figure and the result is rounded to match. We write 9.0 cm2 rather than 9 cm2 since the 0 is significant. NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  6. 誤差傳遞: (c) Products of powers: z =xmyn Using simpler average errors Using standard deviations NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  7. 誤差傳遞: (c) Products of powers: z =xmyn Example: w = (4.52 ± 0.02) cm, A = (2.0 ± 0.2) cm2, y = (3.0 ± 0.6) cm. Find . Z=wy2/A1/2 , Δ z/z=? … The second relative error, (y/y), is multiplied by 2 because the power of y is 2. The third relative error, (A/A), is multiplied by 0.5 since a square root is a power of one half. So z = 0.49 (28.638 cm2) = 14.03 cm2 which we round to 14 cm2, z = (29 ± 14) cm2 for using the average error. If consider the standard deviation using Eq. 3b, then, z=(29 ± 12) cm2. Because the uncertainty begins with a 1, we keep two significant figures and round the answer to match. NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  8. Example Spherometer(球徑計)量測 圓面之曲率半徑= R +/-  R Where 圓面之曲率半徑 R = h/2 + S2 / 6h h : vertical 升降高度(由前面 Micrometer 方法求得)  S:頂點間距離(較佳之S求法=?) NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

  9. Example Spherometer(球徑計)量測 圓面之曲率半徑= R +/-  R Where 圓面之曲率半徑 R = h/2 + S2 / 6h h : vertical 升降高度(由 Micrometer 方法量得)  S:頂點間距離 算 R: 先算 S2 之誤差傳遞 , h之誤差傳遞 (1STD) 再算 S2 / 6h 之誤差傳遞 (By 除法誤差傳遞_ S2 vs 6h) 最後算 h/2 + S2 / 6h 之誤差傳遞 (By 加法誤差傳遞_ h/2 vs S2 / 6h) NTHU 98上 普物實驗 講師 侯宗昆 助教 陳慶鴻 王宏哲

More Related