470 likes | 604 Views
Features for handwriting recognition. The challenge. “Rappt JD 10 Feb no 175, om machtiging om af”. Short processing pipeline. Learning. “machtiging”. Feature extraction. Classification. 82,34,66,…. “machtiging”. 0.12. Processing pipeline. Preprocessing. Feature extraction.
E N D
The challenge “Rappt JD 10 Feb no 175, om machtiging om af”
Short processing pipeline Learning “machtiging” Feature extraction Classification 82,34,66,… “machtiging” 0.12
Processing pipeline Preprocessing Feature extraction Classification
Input image types • Color: • Grayscale: • Binary:
Preprocessing • Goal: enhance the foreground while reducing other visual symptoms (stains, noise, pictures, ...) • Methods: • Contrast stretching • Highpass filtering • Despeckling • Change color representation (RGB, HSV, grayscale, black/white, …) • Remove selected connected components () • …
Processing pipeline Preprocessing Segmentation Feature extraction Classification
Sentences Words Characters (use grammar) (use dictionary) (use alphabet) Object of classification
Object representations • Image • Unordered vectors (in a coco) • Contour vectors • On-line vectors • Skeleton image • Skeleton vectors I(x, y) (x, y)i (x, y)k (x, y)k I(x, y) (x, y)k
A full processing pipeline Preprocessing Segmentation Normalization Feature extraction Classification
Invariance • Luminance / contrast • Position • Size • Rotation • Shear • Writer style • Ink thickness • …
Invariance by normalization Contrast stretching • Luminance / contrast • Position • Size • Rotation • Shear • Writer style • Ink thickness • … Center on center of gravity Scale to standard size
Invariance by trying many deformations • Luminance / contrast • Position • Size • Rotation • Shear • Writer style • Ink thickness • … Try different scale factors Try different rotations Try different deformations … and use the best recognition result
Invariance by using invariant features • Luminance / contrast • Position • Size • Rotation • Shear • Writer style • Ink thickness • … Zernike invariant moments
A full processing pipeline Preprocessing Segmentation Normalization Feature extraction Classification 82,34,66,…
Feature ROI types • Whole object • Zones • Windowing
Feature types • Image itself • Statistical • Structural • Abstract • Image (off-line) features (1—20) • Contour / on-line features (21 – 28)
Feature 1 – 3 • Connected component images • Scaled image • Distance transform
2 3 Feature 6: run count pattern 3 6
avg stdev Feature 7: run length pattern avg stdev
Feature 12: Hinge (By Marius Bulacu)
Feature 14: J.C. Simon (1/2) Singulariteiten Regelmatigheden
Feature 14: J.C. Simon (2/2) "million" ==> convex:concave:3(north:concave) :(north:LOOP):concave:(north:LOOP) :concave:north :concave:HOLE :2(convex:concave) (J.-C. Simon, 1989)
Feature 17: Fourier transform (1/2) From: http://ccp.uchicago.edu/~dcbradle/pages/5.23.06.html
Feature 17: Fourier transform (2/2) Fig. 1 and 3 from: http://www.csse.uwa.edu.au/~wongt/matlab.html Fig. 2 from: http://www.chemicool.com/definition/fourier_transform.html
Feature 18: Wavelet transform From: http://www.regonaudio.com/Audio%20Measurement%20via%20Wavelets.html
Feature 19: Hu invariant moments • Derived from moments • Moments describe the image distribution with respect to its axes • Works on (x, y) vectors • Invariant for scale, position and rotation area of the object center of mass Slide adapted from: http://www.cedar.buffalo.edu/~govind/CSE717/lectures/CSE717_3.ppt
From: Trier, O. D., Jain, A. K., and Taxt, T. (1996). Feature extraction methods for character recognition - a survey. Pattern Recognition,29:641–662. Feature 20: Zernike moments • Invariant for scale, position and rotation • Reconstructing original
Feature 21 – 28: Contour features • (cos, sin) of running angle • (cos, sin) of running angular difference • Angular difference • Fourier transform • Ink density (horizontal or vertical) • Radon transform: (ink density, computed radially from the c.o.g.) • Angular histogram • Curvature scale space ()
Feature 28: Curvature scale space iteration pos From: http://www.christine.oppe.info/blog/category/formen-und-farben/formenvergleich/