1 / 22

Integer Programming and Logic-Based Modeling Jan Fábry, Jan Pelikán

Integer Programming and Logic-Based Modeling Jan Fábry, Jan Pelikán. ___________________________________________________________________________ MME 2003, Prague. Integer Programming Models. Discrete variables: NP-hard problems.

rob
Download Presentation

Integer Programming and Logic-Based Modeling Jan Fábry, Jan Pelikán

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Integer Programming and Logic-Based ModelingJan Fábry, Jan Pelikán ___________________________________________________________________________ MME 2003, Prague

  2. Integer Programming Models Discrete variables: NP-hard problems ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague Standard Branch and Bound Method • Non-polynomial method (exponential number of branches) • Estimation of the optimal objective value

  3. Integer Programming Models Reduction of number of branches ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague • Skiping non-effective branches (using the estimation of the optimal objective value) • Heuristic methods • Logic-based Branch and Bound Method

  4. TSP – IP Model ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  5. TSP – Logic-Based Model ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  6. Cost = (5, 8, 4) Profit = (3, 5, 2) Feasible (4, 2, 1) Value  {1, 2, 3, 4} All different Infeasible (2, 2, 1) Integer Knapsack Problem Example: ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague 3 objects Total profit  30 Objective: minimize total cost

  7. IP model Logic-based model Integer Knapsack Problem ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  8. Logic-based Approach Advantage ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague • Reduction of branches • Simplicity of L-B models Disadvantage • No estimation of the optimal value

  9. VAR VAR VAR VALUE VALUE VALUE x1 x1 x1 1 2 2 2 3 4 x2 x2 x2 1 2 2 3 4 4 x3 x3 x3 1 2 3 3 3 4 Integer Knapsack Problem Domain ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  10. x1 1 2 x2 1 2 x3 3 4 Integer Knapsack Problem Domain reduction ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague 

  11. x1 1 2 3 4 x2 2 3 4 x3 1 2 3 4 Integer Knapsack Problem Bounds consistency maintenance ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague 

  12. 1 2 2 3 3 3 3 3 4 4 4 2 2 3 3 3 4 4 4 4 4 4 1 1 1 1 2 2 2 2 2 3 3 3 4 4 x1 ≤ 2 x1 ≥ 3 z = 54 x2 ≤ 3 x2 ≥ 4 z = 52 x3 ≤ 1 x3 ≥ 2 z = 51 z = 55 Integer Knapsack Problem ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  13. Logic-Based Modeling Defined predicates ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague all-different {y1,…,yn} • The domains of variables yj may have more than n elements. • The constraint requires that variablesy1,…,yntake distinct values. • It is mostly used in assignment problems.

  14. The constraint requires that yj is the integer occurring after j in some permutation of 1,2,…,n. • Used in vehicle routing applications. Logic-Based Modeling Defined predicates ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague circuit (y1,…,yn)

  15. Logic-Based Modeling Defined predicates ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague path (y1,…,yk)

  16. The constraint requires that value of xjoccurs exactly mj times in array a of an arbitrary length. Logic-Based Modeling Defined predicates ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague distribute ((m1,…,mn), (x1,…,xn), a)

  17. Logic-Based Modeling Defined predicates ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague cumulative ((t1,…,tn), (d1,…,dn), (c1,…,cn), C) • Used in job scheduling problems. • Variable tj represents the start time of the job j. • Parameters dj and cj are the duration and the consuming resource rate of the job j. • The resource limit is C.

  18. Logic-Based Modeling Defined predicates ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague element (y, (c1,…,cn), z) • The constraint requires that z = cy. • y and z are variables. • All cj are constants. • Used in lot-sizing problems.

  19. Software Standard Branch and Bound Method ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague LINGO, AMPL, XPRES-MP, ILOG CPLEX,… Logic-based modeling CHIP V5, OPBD P, ILOG Solver (OPL Studio),… TRIAL VERSION:http://www.ilog.com/products/oplstudio/trial.cfm

  20. Mathematical Recreation JAN DNES NEVI ZDA SE JEDE JEDNA JIZDA ZNOVA enum Letters {J,A,E,N,D,S,V,I,Z,O}; var int k[Letters] in 0..9; solve {alldifferent(k) onDomain; 100*k[J]+10*k[A]+k[N] +1000*k[D]+100*k[N]+10*k[E]+k[S] +1000*k[N]+100*k[E]+10*k[V]+k[I] +100*k[Z]+10*k[D]+k[A] +10*k[S]+k[E] +1000*k[J]+100*k[E]+10*k[D]+k[E] +10000*k[J]+1000*k[E]+100*k[D]+10*k[N]+k[A] +10000*k[J]+1000*k[I]+100*k[Z]+10*k[D]+k[A] =10000*k[Z]+1000*k[N]+100*k[O]+10*k[V]+k[A]; k[J]>=1; k[D]>=1;k[N]>=1;k[Z]>=1; k[S]>=1; [J]<=5; }; ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  21. JAN DNES NEVI ZDA SE JEDE JEDNA JIZDA ZNOVA 201 3189 1854 630 98 2838 28310 24630 61750 10 solutions Mathematical Recreation ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague

  22. ___________________________________________________________________________ Integer Programming and Logic-Based Modeling MME 2003, Prague Questions

More Related