1 / 23

Compiler design

Compiler design. Table-driven syntax-directed translation. Top-down table-driven syntax-directed translation. Top-down table-driven syntax-directed translation. Augment the parser algorithm to implement attribute migration.

Download Presentation

Compiler design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Compiler design Table-driven syntax-directed translation Joey Paquet, 2000-2017

  2. Top-down table-driven syntax-directed translation Joey Paquet, 2000-2017

  3. Top-down table-driven syntax-directed translation • Augment the parser algorithm to implement attribute migration. • Introduce additional symbols in the grammar’s right hand sides for semantic actions that process semantic attributes. • The grammar becomes an attribute grammar. • When such a symbol is on top of the stack, execute the semantic action. • Problem: the attributes have to be pushed and popped at a different pace compared to symbols on the parsing stack. • Solution: use an additional stack (the semantic stack) to store the attributes. • The semantic actions typically pop semantic records from the semantic stack, do some processing, then push a semantic record on the stack. Joey Paquet, 2000-2017

  4. Top-down table-driven syntax-directed translation Joey Paquet, 2000-2017

  5. E'  Attribute migration id1+id2*id3$ E B:{Es = E's} A:{E'i = Ts} T E' D:{E's = E's} G:{Ts = T's} C:{E'i = E'i+Ts} T + G:{Ts = T's} F T' E:{E's = E'i} F:{T'i = Fs} F T' J:{T's = T'i} F:{T'i = Fs} K:{Fs = id.val} K:{Fs = id.val} I:{T's = T's}  id id F T' * H:{T'i = T'i * Fs} J:{T's = T'i} K:{Fs = id.val} id  Joey Paquet, 2000-2017

  6. E'  Attribute migration id1*id2+id3$ E B:{Es = E's} A:{E'i = Ts} T E' D:{E's = E's} G:{Ts = T's} C:{E'i = E'i+Ts} T + F T' E:{E's = E'i} F:{T'i = Fs} G:{Ts = T's} I:{T's = T's} K:{Fs = id.val} id F:{T'i = Fs} F T' F T' * H:{T'i = T'i * Fs} J:{T's = T'i} J:{T's = T'i} K:{Fs = id.val} K:{Fs = id.val}  id  id Joey Paquet, 2000-2017

  7. Parsing example using semantic stack for attribute migration Joey Paquet, 2000-2017

  8. Parsing example using semantic stack for attribute migration Joey Paquet, 2000-2017

  9. Top-down syntax-directed translation grammar transformation Joey Paquet, 2000-2017

  10. a+b*c E E  TE’ E’  +TE’ |  T  FT’ T’  FT’ |  F  id T1 E’1 T’1 E’2 F1 + T2   id (va : ) F2 T’2 T’3 id (vb : ) F3 *  id (vc : ) Top-down syntax-directed translation • Problem: Left recursion is not allowed in predictive top-down parsing. We must transform the grammar. We saw how to transform a context-free grammar to remove left recursions. How is an attribute grammar transformed? Joey Paquet, 2000-2017

  11. With left recursions E  E+T {Es = Es+Ts} E  T {Es = Ts} T  T*F {Ts = Ts*Fs} T  F {Ts = Fs} F  id {Fs = lookup(id)} a+b*c E {Es = Es + Ts} E + T {Es = Ts} {Ts = Ts * Fs} T T F {Ts = Fs} * {Es = Ts} {Fs = lookup(c)} F F {Fs = lookup(a)} id (vc : ) {Fs = lookup(b)} id (va : ) id (vb : ) Joey Paquet, 2000-2017

  12. Without left recursions E  T{E’i=Ts}E’{Es=E’s} E’  +T{E’i=E’i+Ts}E’{E’s=E’s} E’  {E’s=E’i} T  F{T’i=Fs}T’{Ts=T’s} T’  F{T’i=T’i*Fs}T’{T’s=T’s} T’  {T’s=T’i} F  id{Fs=lookup(id)} a+b*c E {Es = E’s} T E’ {E’i = Ts} {E’s = E’s} {Ts = T’s} + F T’ T E’ {T’i = Fs} {E’i = E’i+Ts} {T’s = T’i} {E’s = E’i} {Fs = lookup(a)} {Ts = T’s}   id (va : ) F T’ {T’i = Fs} {T’s = T’s} {Fs = lookup(b)} * id (vb : ) F T’ {T’i = Fs} {T’s = T’i} {Fs = lookup(c)}  id (vc : ) Joey Paquet, 2000-2017

  13. Top-down syntax-directed translation: attribute grammar transformation • Solution: The grammar is transformed as we saw before to eliminate left recursions in a context-free grammar. • But when we introduce attributes, the transformation spreads some attributes over multiple rules, thus introducing the need for attribute inheritance. The following transformation should be applied: A1 A2 A1 Q1 A3   Q2  Q3 Q4   A1 A2 {A1s=f(A2s, )} A1 {Q1i=g()}Q1{A1s=Q1s} A3   {A3s=g()} Q2  {Q3i=f(Q2i, )}Q3{Q2s=Q3s} Q4  {Q4s=Q4i} Joey Paquet, 2000-2017

  14. where: A1,2,3  E1,2,3 Q1,2,3,4  E’1,2,3,4   Ts   Ts f(As, )  +(Es,Ts) g()  Ts Top-down syntax-directed translation: attribute grammar transformation A1 A2 A1 Q1 A3   Q2  Q3 Q4   E1 E2+T1E1 T2E1’ E3  T2 E2’  +T1E3’ E4’   A1 A2 {A1s=f(A2s,)} A1 {Q1i=g()}Q1{A1s=Q1s} A3   {A3s=g()} Q2  {Q3i=f(Q2i,)}Q3{Q2s=Q3s} Q4  {Q4s=Q4i} E1 E2+T1{E1s=E2s+T1s} E1 T2{E1’i=T2s}E1’{E1s=E1’s} E3  T2{E3s=T2s} E2’  +T1{E3’i=E2’i+T1s}E3’{E2’s=E3’s} E4’  {E4’s=E4’i} Joey Paquet, 2000-2017

  15. Bottom-up syntax-directed translation Building an abstract syntax tree using syntax-directed translation Joey Paquet, 2000-2017

  16. Bottom-up syntax-directed translation • Syntax-directed translation is much easier to implement bottom-up than top-down. • Synthetized attributes are propagated from the bottom-up, so we have this propagation mechanism for free in a bottom-up parse • The presence of inherited attributes generally comes from the elimination of left-recursions and ambiguities. As these are not a problem in bottom-up parsing, we seldom need to process inherited attributes in bottom-up translation • In bottom-up translation, the parse and semantic stacks move in synchronism, so there is no need for an additional semantic stack. • Semantic rules are triggered as handles are popped from the stack Joey Paquet, 2000-2017

  17. Bottom-up syntax-directed translation: building an abstract syntax tree • The tree is built by grafting subtrees (handles) to the nodes. • The semantic actions build the subtrees by grafting generally through simple pointer manipulations. • Generally, all nodes (internal or leaves) are of the same type. Differences can be managed by using a variant record structure: nodeKind = (internal,leaf) treeNode = record token : tokenType case kind : nodeKind of internal : (left,right : *treeNode) leaf : (location : integer) end Joey Paquet, 2000-2017

  18. nodePtr makeLeaf(tok tokenType, location integer){ leafPtr = new(nodePtr) leafPtr.kind = leaf leafPtr.token = tok leafPtr.location = location return leafPtr } nodePtr makeTree(op tokenType, rightSon,leftSon nodePtr){ rootPtr = new(nodePtr) rootPtr.kind = internal rootPtr.token = op rootPtr.left = leftSon rootPtr.right = rightSon return rootPtr } Bottom-up syntax-directed translation: building an abstract syntax tree • We need a makeTree function that will be used to create subtrees and a makeLeaf function that will be used to create tree leaves: Joey Paquet, 2000-2017

  19. Bottom-up syntax-directed translation: building an abstract syntax tree Joey Paquet, 2000-2017

  20. Bottom-up syntax-directed translation: building an abstract syntax tree Joey Paquet, 2000-2017

  21. E4 + + + + + id1 id1 id1 id1 id1 = E2 E2 E5 S E1 E1 E4 * * * id2 id2 id2 id2 id2 id3 id3 id3 E5 E3 E6 E3 E6 id4 Bottom-up syntax-directed translation: building an abstract syntax tree 5 8 10 11 E E B D 14 15 16 E C A Joey Paquet, 2000-2017

  22. Bottom-up syntax-directed translation • We can use a similar process to build other kinds of intermediate representations. • A similar process can also be used to generate target code directly, but that diminishes the possibilities of high-level code optimization. • A similar technique can also be adopted by top-down parsing to build syntax trees as an intermediate representation. Joey Paquet, 2000-2017

  23. References • Fischer, Cytron, Leblanc. Crafting a Compiler, Chapter 7. Addison-Wesley. 2010. • Robert Paul Corbett. Static Semantics and Compiler Error Recovery.PhD thesis, University of California Berkeley. 1985. Joey Paquet, 2000-2017

More Related