1 / 14

Matrix Solvers Direct Methods

Matrix Solvers Direct Methods. Phil Bording Memorial University. What makes the matrix structure?. The mathematical formulation!! Finite Elements Finite Differences Boundary Element Methods. I, j+1 i-1,j-1 I,j i+1,j I,j-1.

Download Presentation

Matrix Solvers Direct Methods

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matrix SolversDirect Methods Phil Bording Memorial University

  2. What makes the matrix structure? The mathematical formulation!! Finite Elements Finite Differences Boundary Element Methods

  3. I, j+1 i-1,j-1 I,j i+1,j I,j-1 Penta-Diagonal - FIVE Star Pattern Two Dimensional Problems

  4. I, j+1 i-1,j-1 I,j i+1,j I,j-1 i+1,j-1 Tri – tri Diagonal - Nine Star Pattern Two Dimensional Problems

  5. I, j+1 i-1,j-1 I,j i+1,j I,j-1 i+1,j-1 Add k to index list, I,j,,k Tri – tri – tri Diagonal - 15 Star Pattern Three Dimensional Problems

  6. Boundary Element No diagonals – totally dense matrix

  7. Discussion Time

  8. Gaussian Processes Use row operations to make a triangle matrix. Only does right had sides at time of solve Factor Matrix into A = L U ( two triangular matrices) Why do row operations ? – because the simple high school problems were too small

  9. Gaussian Processes How about using matrix multiply? N^3 work with N^2 I/O – Fastest thing we can do on a computer – 2-4 gigaflops on PC 33 gigaflops on Cell Processor Factor Matrix into A = L U ( two triangular matrices) But L = L 0 So we have block matrix operations A L Inside the LU factorization

  10. Open Source Codes • Atlas – uses automatic learning to set matrix block sizes to maximize performance of system cache, etc. • PlaPack – written to make solving large dense systems easy. High speed matrix multipy • Scalapack – sparse matrix solvers • PetSc – family of solvers • And many others – do a web search

  11. Open Source Codes • Mesh generators • 2D triangles • 3D tetrahedral - hex • And many others – do a web search

  12. Programs • First Session Run Gauss.f on system – in your directory Build code for matrix - vector multiplication. • Second Session Modify MXM to do Gaussian elimination

More Related