280 likes | 299 Views
This study conducted in the summer of 1999 aimed to analyze bioluminescence patterns around LEO-15 by deploying REMUS vehicles and sampling the deployment area for nearshore optics, physical structure, and biological patterns. The study assessed in-water parameters, utilized in-water optics to predict emerging bioluminescence, and identified the correlation between optical parameters and bioluminescence signals. Findings revealed high variability in bioluminescence over time and space, predominantly linked to heterotrophs. The study highlighted the importance of optical parameters in understanding bioluminescence signals. Future efforts involve continuous real-time vertical profiling of bioluminescence, fine-scale spatial distribution analysis, vicarious calibrations, and seasonal studies on the West Coast. Optical properties of the water column significantly influence bioluminescence signal propagation.
E N D
Bioluminescence Exercises at LEO-15: Summer 1999 Mark A. Moline Biological Sciences Department California Polytechnic State University, San Luis Obispo, CA 93407 James Case & Christy Herren Marine Science Institute University of California, Santa Barbara, CA 93106 Oscar Schofield & Scott Glenn Institute of Marine and Coastal Sciences Rutgers University, New Brunswick, NJ 08903 W. Paul Bissett Florida Environmental Research Institute Tampa, FL 33611
Goals • Deploy BBP REMUS @ LEO-15 • Sample around REMUS deployment area for nearshore optics, physical structure and biological patterns • Assess in water parameters as predictors • Utilize in water optics to predict potential emerging bioluminescence from surface waters
Strategy • Deploy REMUS vehicle twice • Use shipboard profiling on a larger grid surrounding the deployment area • Profile within the REMUS deployment area
Assets REMUS (Remote Environmental Monitoring UnitS) Range: 40 km Navigation: long baseline acoustic Flight Pattern: Combination Bioluminescence Bathyphotometer Flow Rate: 300-500 ml/s Sensivitity: 1E6 - 1E13 photons/s
Assets R/V Arabella Minnow
Parameter Bioluminescence Fluorescence Absorption Attenuation Scattering Particle Size Instruments/Parameters Profiling REMUS BRER BBP HS-6 Fluorometer AC-9 -- AC-9 -- HS-6 (AC-9) OBS -- LISST
5m REMUS Volume 16m 16m Sampling Grid(s) Bathymetry
Larger Grid Patterns BL (ph/s/.35L) 1E7 1E12 REMUS Volume
Larger Grid Patterns BL (ph/s/.35L) 1E7 1E12 0 Depth (m) 15 Latitude (~5km) Longitude (~2km)
Larger Grid Patterns Movie
Larger Grid Patterns BL Isosurfaces 1E10 ph/s/35L 0 3E11 ph/s/.35L Depth (m) 15 Latitude (~5km) Longitude (~2km)
REMUS Flight Pattern #1 Depth (m) Latitude (~300m) Longitude (~500m)
REMUS Bioluminescence Pattern BL Isosurfaces 5E10ph/s/.35L 1E11ph/s/.35L Depth (m) Latitude (~300m) Longitude (~500m)
REMUS Fluorescence Pattern FL Isosurfaces 380v 961 v Depth (m) Latitude (~300m) Longitude (~500m)
Bioluminescence (ph/s/.35L) 9.00E+09 2.00E+10 4.00E+10 6.00E+10 9.00E+09 2.00E+10 4.00E+10 6.00E+10 2 2 RUN #1 RUN #2 3 3 4 4 Depth (m) 5 5 6 6 7 7 3.00E+02 7.00E+02 1.10E+03 3.00E+02 7.00E+02 1.10E+03 Fluorescence (v) OBS x 10 (v) REMUS - Averaged Profiles
Larger Grid Patterns BL (ph/s/.35L) 1E7 1E12 0 Depth (m) 15 Latitude (~5km) Longitude (~2km)
REMUS Bioluminescence Pattern BL Isosurfaces 5E10ph/s/.35L 1E11ph/s/.35L Depth (m) Latitude (~300m) Longitude (~500m)
REMUS vs. Grid Profile Bioluminescence (ph/s/.35L) 1.00E+09 1.00E+10 1.00E+11 1.00E+12 0 Profile 3 REMUS Run #1 6 Depth (m) REMUS Run #2 9 12 15
BL O BS A B C F luo r Bb Ba c ks c at A BS S ca t A TT Ba c ks c at BL -0.21 -0.21 -0.40 -0.39 0.09 -0.35 - - O BS 0.10 0.16 0.16 -0.03 0.20 - - Ba c ks c at A 0.60 0.30 0.15 0.14 - - A BS B 0.94 0.2 0.24 - - S ca t C 0.17 0.22 - - A TT F luo r -0.42 - - Bb - - Ba c ks c at Correlation w/ Profile Parameters
Conclusions • Small AUVs show great promise • Bioluminescence was highly variable in space and time • Majority of bioluminescence was associated with heterotrophs • General patterns for ship and REMUS deployments were similar • Optical parameters not strongly correlated with the bioluminescence; however the optical parameters are essential for propagating BL signal (see Paul)
Future Efforts • Installation of a BBP on the optical node: • Continuous Real-Time vertical profiles of BL • Node instrumentation includes IOP optics, particle size distribution and FRR (photophysiology) • In conjunction with vertical profiling pump to quantify autotrophic/heterotrophic communities. • Time series mapping of BL potential
1.0 1 Tidal cycle Upwelling Absorption at 440 nm (m-1) 6 Depth (m) 0 12 30 60 0 Time (hr)
Future Efforts • Dedicated BBP REMUS system: • Targeted fine scale spatial distribution of BL @ LEO-15 • Vicarious calibrations with the node profiles of BL • Deployment on West Coast to examine seasonal responses of BL to runoff events (Plumes and Blooms study). • Spatial mapping of BL potential in shallow coastal regions
Optical properties of the water column directly impact bioluminescence signal propagation