1 / 14

巩固练习:

√. √. √. √. √. √. √. √. √. √. √. √. √. √. √. √. √. √. 巩固练习:. 1. 菱形具有而矩形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补. A. 2. 如图,在矩形 ABCD 中,对角线 AC , BD 交 于点 O .已知∠ AOB = 60° , AC = 16 ,则图 中长度为 8 的线段有 ( ) A . 2 条 B . 4 条

rocio
Download Presentation

巩固练习:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

  2. 巩固练习: 1.菱形具有而矩形不一定具有的性质是( ) A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角互补 A 2.如图,在矩形ABCD中,对角线AC,BD交 于点O.已知∠AOB= 60°,AC=16,则图 中长度为8的线段有( ) A.2条 B.4条 C.5条 D.6条 D

  3. 巩固练习: 3. D是△ABC内一点,BD⊥CD,AD=6,BD =4,CD=3,E、F、G、H分别是AB、AC、CD、 BD的中点,则四边形EFGH的周长是______. 11

  4. 例题讲解: 例1 在矩形ABCD中,AB=4cm,BC=8cm, E、F分别是AD、BC上两点,并且AC垂直平 分EF,垂足为O. (1)连接AF、CE.说明四边形AFCE为菱形; (2)求AF的长.

  5. 例题讲解: 例2 如图,已知□ABCD中,对角线AC、BD 交于点O,E是BD延长线上的点,且△ACE 是等边三角形,∠AED=2∠EAD,说明四边形 ABCD是正方形.

  6. 巩固练习: 1.已知一个菱形的周长是20cm,两条对角线 的比是4∶3,则这个菱形的面积是( ) A.12cm2 B.24cm2 C.48cm2 D.96cm2 C 2.如图,矩形ABCD中,E为BC中点,作 ∠AEC的角平分线交AD于F点.若AB=6, AD=16,则FD的长度为( ) A.4 B.5 C.6 D.8 C

  7. 巩固练习: 3.如图,正方形ABCD,以AB为边向正方形 外作等边三角形ABE,连结DE,CE,则 ∠DEC=____° . 30

  8. 巩固练习: 4.如图,点M是矩形ABCD边AD的中点, 2AB=AD,点P是BC边上一动点,PE⊥MC, PF⊥BM,垂足分别为E、F,求点P运动到 什么位置时,四边形PEMF为正方形.

  9. A E O B D C 拓展与延伸: 如图,△ABC中,AD是边BC上的中线, 过点A作AE//BC,过点D作DE//AB,DE与 AC、AE分别交于点O、点E,连接EC. (1)AD与EC相等吗?为什么?; (2)当AB=AC时,判断四边形ADCE的形状, 并说明理由; (3)当△ABC满足____条件时, 四边形ADCE是矩形.

  10. 小结:

  11. 拓展与延伸 如图,平行四边形ABCD的对角线相交 于点O. (3)平行四边形ABCD的周长18 cm,△AOB 的周长比△COB的周长少1 cm,求AB、BC 的长.

  12. A D O B C 拓展与延伸 如图,在 ABCD中, 对角线AC、BD交 于点O,AB=4,AC=6,BD=10. (1)OA=____、OB=_____; (2)判断△AOB的形状; (3)BC=_____; (4) ABCD的周长是_______. 5 3

  13. A D E F C B 巩固练习: 例2 如图,在□ABCD中,点E、F是对角 线AC两点,且AF=CE,试说明线段BE、DF 有什么关系?

  14. B E F D A C 拓展与延伸: 如图,在△ABC中,∠ACB=90°,BC 的垂直平分线DE交BC于D,交AB于E,F在 DE上,且AF=CE=AE. (1)说明四边形ACEF是平行四边形; (2)当∠B满足什么条件时,四边形 ACEF是菱形,并说明理由.

More Related