1 / 28

CS1010E Programming Methodology Tutorial 7 Arrays and Matrices

CS1010E Programming Methodology Tutorial 7 Arrays and Matrices. C14,A15,D11,C08,C11,A02. Question 1 (a). Reverse a portion of a list void reverse( int list[], int size,int start,int n); Algorithm: find start and end exchange list[start] and list[end]

rod
Download Presentation

CS1010E Programming Methodology Tutorial 7 Arrays and Matrices

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS1010E Programming MethodologyTutorial 7Arrays and Matrices C14,A15,D11,C08,C11,A02

  2. Question 1 (a) • Reverse a portion of a list • void reverse(int list[],intsize,intstart,int n); • Algorithm: • find start and end • exchange list[start] and list[end] • move start to the right and list to the left • stop when start >= end List: Reverse(list, 8, 2, 4)

  3. Question 1 (a) • Reverse a portion of a list • void reverse(int list[],intsize,intstart,int n); • Algorithm: • find start and end • exchange list[start] and list[end] • move start to the right and list to the left • stop when start >= end List: Start =2 end = start + n -1 = 5 Reverse(list, 8, 2, 4)

  4. Question 1 (a) • Reverse a portion of a list • void reverse(int list[],intsize,intstart,int n); • Algorithm: • find start and end • exchange list[start] and list[end] • move start to the right and list to the left • stop when start >= end List: start end Reverse(list, 8, 2, 4)

  5. Question 1 (a) • Reverse a portion of a list • void reverse(int list[],intsize,intstart,int n); • Algorithm: • find start and end • exchange list[start] and list[end] • move start to the right and list to the left • stop when start >= end List: start end Start >= end, stop! Reverse(list, 8, 2, 4)

  6. Question 1 (a) void reverse(int list[],int size,int start,int n){ int end = start + n -1; inttmp; while(start <= end){ tmp= list[start]; list[start]= list[end]; list[end]=tmp; start++; end--; } } Code for question 1 (a)

  7. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm I: • for each element list2[i] • insert it into list at position index + i • insertion can be done by rightshiftalgorithm from last tutorial list Merge list2 rightshift this range insert(list,5,list2,4,2)

  8. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm I: • for each element list2[i] • insert it into list at position index + i • insertion can be done by rightshiftalgorithm from last tutorial list Merge list2 rightshift this range insert(list,5,list2,4,2)

  9. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm I: • for each element list2[i] • insert it into list at position index + i • insertion can be done by rightshiftalgorithm from last tutorial list Merge list2 rightshift this range insert(list,5,list2,4,2)

  10. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm I: • for each element list2[i] • insert it into list at position index + i • insertion can be done by rightshiftalgorithm from last tutorial list Merge list2 rightshift this range insert(list,5,list2,4,2)

  11. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm I: • for each element list2[i] • insert it into list at position index + i • insertion can be done by rightshiftalgorithm from last tutorial list Merge list2 done insert(list,5,list2,4,2)

  12. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm II: • move every element in list[index, size] • list[i+size2] = list[i]; • insert it into list at position index + I • Copy list2 into position • use listcopyfrom last tutorial list Move elements list2 insert(list,5,list2,4,2)

  13. Question 1 (b) • int insert(int list[],intsize,int list2[],int size2,int index); • Algorithm II: • move every element in list[index, size] • list[i+size2] = list[i]; • insert it into list at position index + I • Copy list2 into position • use listcopyfrom last tutorial list Move elements list2 insert(list,5,list2,4,2) listcopy(list2, list + 2, 4)

  14. Question 1 (c) • Delete a rang of element within a list • int delete(int list[],intsize,intindex,int n); • Algorithm: • shift element from list[index+n, size-1] to left • list[i-n] = list[i]; list to be deleted [4, 8] to be shift left i-3 =1 i=4 delete(1,3)

  15. Question 1 (c) • Delete a rang of element within a list • int delete(int list[],intsize,intindex,int n); • Algorithm: • shift element from list[index+n, size-1] to left • list[i-n] = list[i]; list to be deleted [4, 8] to be shift left i-3 =2 i=5 delete(1,3)

  16. Question 1 (c) • Delete a rang of element within a list • int delete(int list[],intsize,intindex,int n); • Algorithm: • shift element from list[index+n, size-1] to left • list[i-n] = list[i]; list to be deleted [4, 8] to be shift left i-3 =3 i=6 delete(1,3)

  17. Question 1 (c) • Delete a rang of element within a list • int delete(int list[],intsize,intindex,int n); • Algorithm: • shift element from list[index+n, size-1] to left • list[i-n] = list[i]; list to be deleted [4, 8] to be shift left i-3 =4 i=7 delete(1,3)

  18. Question 1 (c) • Delete a rang of element within a list • int delete(int list[],intsize,intindex,int n); • Algorithm: • shift element from list[index+n, size-1] to left • list[i-n] = list[i]; list to be deleted [4, 8] to be shift left i-3 =5 i=8 Done! delete(1,3)

  19. Question 2 • Score is represented by a 2-D array (Matrix) • let’s call the matrix as student[][3] • student[i] • is a 1-D array of length 3 • Two problems: • Reading in matrix • Sorting matrix based on Mark student[3] student[9]

  20. Question 2 • Reading in matrix int students[NUM_STUDENTS][3]; intmatric, mark; for(i=0;i< NUM_STUDENTS;i++){ //Scans for data, saves the into 2 columns. scanf("%d %d",&matric,&mark); students[i][0]= matric; students[i][1]= mark; }

  21. for( c =0; c <( n -1); c++){ position = c;for( d = c +1; d < n ; d++){if( array[position]> array[d]) position = d;}if( position != c ){ swap = array[c]; array[c]= array[position]; array[position]= swap;}} Question 2 • Sorting Matrix by Mark (student[i][1]) • Similar to 1-D sorting for(i=0;i<( n -1);i++){ for(j =0; j < n -i-1; j++){ if(array[j]> array[j+1]){ temp = array[j]; array[j]= array[j+1]; array[j+1]= temp; } } } The difference between 1-D and 2-D is in: Compare SWAP Bubble sort for 1-D

  22. Question 2 • Sorting Matrix by Mark (student[i][1]) • Compare two students’ mark • student[i][1] < student[j][1] • Swap the records of two students student i inttmp[2]; student j tmp[0][0]=student[j][0]; tmp[0][1]=student[j][1] temp

  23. Question 2 • Sorting Matrix by Mark (student[i][1]) • Compare two students’ mark • student[i][1] < student[j][1] • Swap the records of two students student i student[j][0] = student[i][0]; student[j][1] = student[i][1]; student j temp

  24. Question 2 • Sorting Matrix by Mark (student[i][1]) • Compare two students’ mark • student[i][1] < student[j][1] • Swap the records of two students student i student j student[i][0] = tmp[0]; student[i][1] = tmp[1]; temp

  25. Question 2 • Sorting the matrix: • for(i=0;i<(n-1);i++){ • for(j=0; j<n-i-1;j++){ • if(student[j][1]>student[j+1][1]){ • temp[0] = array[j][0]; • temp[1] = array[j][1]; • student[j][0]= student[j+1][0]; • student[j][1]= student[j+1][1]; • array[j+1][0]= temp[0]; • array[j+1][1]= temp[1]; • } • } • } for(i=0;i<(n-1);i++){ for(j=0; j<n-i-1;j++){ if(array[j]>array[j+1]){ temp = array[j]; array[j]= array[j+1]; array[j+1]= temp; } } } 1-D Bubble Sort 2-D Bubble Sort

  26. Question 3 • Summing up surroundings: • Problem Solving: • Step 1: What is input and what is output? • Step 2: How to store the input and output? • Store row and column into two variables: width, height • Store M*N digits into one 2D array - board[][] • Store M*N digits into another 2D array - result[][] • Step 3: How to derive the output based on the input? • Each cell in result[][] equals the sum of the eight adjacent cells from board[][]

  27. Question 3 • Algorithm: • For each mine[i][j], summing up its surroundings: • mine[i-1][j] + mine[i+1][j] + mine[i][j-1] + mine[i][j+1] • Write output to a new matrix • result[i][j] = mine[i-1][j] + mine[i+1][j] + mine[i][j-1] + mine[i][j+1];

  28. Thank you See you next week!!

More Related