1 / 47

Gestão Integrada de Bacias Hidrográficas – Aula 2 de Modelação: Processos que ocorrem na Bacia

Gestão Integrada de Bacias Hidrográficas – Aula 2 de Modelação: Processos que ocorrem na Bacia. Hydrology in SWAT. Ea. R day. Q surf. Q gw ( baseflow ). W seep. The Rain. Must be measured in rain gauges. In how many? How to interpolated/extrapolated? .

rod
Download Presentation

Gestão Integrada de Bacias Hidrográficas – Aula 2 de Modelação: Processos que ocorrem na Bacia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gestão Integrada de Bacias Hidrográficas – Aula 2 de Modelação: Processos que ocorrem na Bacia

  2. Hydrology in SWAT Ea Rday Qsurf Qgw(baseflow) Wseep

  3. The Rain • Must be measured in rain gauges. In how many? • How to interpolated/extrapolated?

  4. Comparing 3 interpolation methods in Trancão THIESSEN POLYGON Inverse of the Distance Weight Regression Model

  5. Evapo-Transpiration • Depends on: • Atmospheric conditions (HR, Temperature, radiation & wind) • Available soil water (above wilting point) • Transpiration surface (Leaf Area Index – LAI)

  6. Evapo-Transpiration • Depends on plants Development and soil cover.

  7. Penman - Monteith • Rn is the net radiation, G is the soil heat flux, (es - ea) ris the vapour pressure deficit of the air, r a is the mean air density at constant pressure, cp is the specific heat of the air, D is the slope of the saturation vapour pressure temperature relationship, g is the psychrometric constant, and rs and ra are the (bulk) surface and aerodynamic resistances. http://www.fao.org/docrep/X0490E/x0490e06.htm

  8. Satellite LAI + Mohid Land = ET

  9. Percolation

  10. Water Dynamics • Richards Equation http://www.mohid.com/wiki/index.php?title=Module_PorousMedia#Water_retention

  11. Difficulties

  12. 10cm 30cm 50cm 70cm Teores de água simulados – Gráficos Tempo/Profundidade Tempo

  13. ETR P-V P-V P-V Chuva 1º ANO 2º ANO 3º ANO Rega 50cm O-I O-I O-I 35cm 15cm P-V Efeito da ETR, chuva e rega nos teores de água Primavera-Verão O-I Outono-Inverno

  14. MOHID LandWatershed Water Content Runoff Rain Intensity IST – MARETEC 2008

  15. Runoff • Is the Rain that does not infiltrate. • Flows at soil surface, can infiltrate (and sometimes exfiltrate. • Flow is controlled by friction.

  16. Scientific Modules that must compose an integrated model • Hydrology • Vegetation (evapotranspiration, nutrients, pesticides, erosion,….) • Mineralisation of Organic matter in the soil (bacterial loop) • Irrigation • Salts dynamics/chemical equilibrium • Rivers, • Reservoirs/lakes, • Estuaries and Coastal Lagoons.

  17. Types of Models • All models compute Evapo-transpiration on the same way. Differences on results depend on the detail of the input data. • Process oriented models (e.g. Hydrus, Mohid, Mike, RZWQM) compute percolation using the Richards Equation. They need fine grids. • Other models use coarse grids and empirical formulations to compute flow (e.g. SWAT, HSPF, BASINS).

  18. Technical modules required • Meteorological data processor, • Climate (seasonal/daily solar evolution), • GIS, • Chemical Equilibrium, • Plants Optimal Growth, • Management Practices, • Graphical interfaces.

  19. Vegetation Module • Production of plants is the major role of catchments. • Diffuse pollution is mostly due to plant growth improvement: • Fertilisation, Phyto-sanitation, irrigation.

  20. Nutrient Pathways (Nutrient cycle)

  21. Soil Organic Matter http://www.fao.org/docrep/009/a0100e/a0100e05.htm

  22. CO2 N2 CH4 NH4+ Psol LABILE OM REFRACTORY OM NO3- ANAEROBIC BIOMASS AEROBIC BIOMASS CO2 Pfix Psol AUTOTROPHIC BIOMASS NH4+ NH3 Urea Soil Nutrient Model

  23. Overgrazing also compromises OM

  24. More information • http://www.mohid.com/wiki/ • http://en.wikipedia.org/wiki/MOHID_Land

  25. 1D Drainage network 2D Overland flow 3D Porous Media Precipitation Variable in Time & Space Distributed vs partially distribuited models MOHID Land SWAT HRU CN, Lag time Watershed picture to farm plots; Vegetation and Erosion Flush events

  26. Processos de qualidade da água em Rios CO2 O2 Nitrato Respiração Amónia Nutrientes Ortofosfato Consumo Sílica Bactérias Produtores Primários Excreção Morte Detritos / MO Consumo Deposição Sedimentos Produtores Secundários

  27. Hydrodynamics • Kinematic wave equation • (equilibrium between gravity and friction) • Trapezoidal shape for channels in both models • Rchisthehydraulicradius for a givendepthofflow (m), • slpchistheslopealongthechannellength (m/m), • n isManning’s “n” coefficient in channel • vcistheflowvelocity (m/s). If inertia is important:

  28. MOHID LandWatershed WaterContent Runoff Rain Intensity IST – MARETEC 2008

  29. CheianaRibeira de Algés (antes da urbanização)

  30. MOHID Land River Sediment Rain Intensity WQ models in river IST – MARETEC 2008

  31. SWAT: Percolation • wperc,lyis the amount of water percolating to the underlying soil layer on a given day (mm H2O), • SWly,excessis the drainable volume of water in the soil layeron a given day (mm H2O), • Δtis the length of the time step (hrs), • TTpercis the travel time for percolation (hrs). • SATlyis the amount of water in the soil layer when completely saturated (mm H2O), • FClyis the water content of the soil layer at field capacity (mm H2O), • Ksatis the saturated hydraulic conductivity for the layer (mm·h-1).

  32. Lateral Flow

  33. Base flow • Qgw,iis the groundwater flow into the main channel on day i (mm H2O), • Qgw,i-1 is the groundwater flow into the main channel on day i-1 (mm H2O), • αgwisthe baseflow recession constant, • Δt is the time step (1 day), and • wrchrgis theamount of recharge entering the aquifer on day i (mm H2O).

  34. CN – Curve Number (0% -100% runoff) Run Off • O CN is a function of: i) permeability, ii) land use and iii) previous soil water content. CN can change between 0.0 (no runoff) and 100 (all precipitation transformed into runoff).

  35. Run Off • S – Soil water retention parameter (mm H2O) • Knowing Qsurf (acumulated runoff) it is possible to estimate infiltration

  36. Bacia do Sado (Plano de Bacia) IST- MARETEC 2009

  37. Delineação • Com base na topografia foram geradas 700 sub-bacias para a RH6 com áreas entre 0.001 km2 e 100 km2 • Sub-bacias foram geradas em função das massas de água 1

  38. Flow Precipitation IST- MARETEC 2009 1

  39. Áreadrenadaporestação de caudal

  40. Definição de HRU Cada sub-bacia comporta-se como uma Unidade de Resposta Hidrológica (HRU) com o mesmo uso de solo, tipo de solo e declive 1

  41. Coupling with Mohid-Water

  42. Águas de Transição: Tipologias e massas de água • RH6 • Tipologia A2 • Estuário mesotidal homogéneo com descargas irregulares de rio • Estuário do Sado • 6 massas de água • Estuário do Mira • 3 massas de água IST- MARETEC 2009 8

  43. Estuário do Sado: Massas de Água IST- MARETEC 2009 28

  44. Poucos dados - estações da Sado WB1 Poucos dados - estações da Sado WB2 Poucos dados - estações da Sado WB2 (individualmente e com a média das estações)

  45. Canal de Alcácer IST- MARETEC 2009

More Related