260 likes | 276 Views
B. Kämpfer. Research Center Dresden-Rossendorf Technical University Dresden. Hot 1-2 Loop QCD***. real, purely imaginary. 100 MeV – 100 GeV. G^2 HTL QPM eQPM vs. lattice QCD. ***: M. Bluhm, R. Schulze, D. Seipt. universe. quarks & gluons. SPS. LHC. RHIC. AGS. SIS. hadrons.
E N D
B. Kämpfer Research Center Dresden-Rossendorf Technical University Dresden Hot 1-2 Loop QCD*** real, purely imaginary 100 MeV – 100 GeV G^2 HTL QPM eQPM vs. lattice QCD ***: M. Bluhm, R. Schulze, D. Seipt
universe quarks & gluons SPS LHC RHIC AGS SIS hadrons Andronic, PBM, Stachel: *
HTL QPM CJT symmetry preserving appoximations:
2-Loop Approximation 1-loop self-energies + HTL self-energies gauge invariance
Λ Karsch et al.
Non-Zero Mu flow equation now forbidden p = 0 R. Schulze
Down to T = 0 Rapidly Rotating Quark Stars with R. Meinel, D. Petroff, C. Teichmuller (Univ. Jena) exact (numerical) solution of Einstein equation (axisymmetry & stationarity) free boundary problem Tc matters shedding limit: kinky edge
HTL QPM eQPM , 2+1 neglect small contributions eQPM + asympt. disp. relations collect. modes + Landau
Purely Imaginary Mu Nf = 4 M.P. Lombardo et al. T=3.5,2.5,1.5,1.1 Tc cont. to real mu: polyn. cont. Roberge-Weiss Z3 symmetry M.Bluhm
Going to High Temperatures Fodor et al. Boyd et al. region of fit Aoki et al. M.Bluhm
Susceptibilities: Test of Mu Dependence 10% problem data: Allton et al., Nf = 2
also good agreement with Gavai-Gupta data for data: Allton et al., Nf = 2 sensible test of flow eq. & baryon charge carriers (no di-quarks etc. needed)
Examples of Side Conditions T = 1.1 Tc d u e solid: pure Nf=2 quark matter, electr.neutr. dashed: Nf=2 quark matter + electrons in beta equilibrium
Naive chiral extrapolation Karsch et al. Cheng et al. CFT Pisarski formula for plasma frequency not really supported by 1-loop self-energies
Quark mass dependence of 1-loop self-energies Feynman gauge gluons plasmons G dispersion relation g = 0.3 g = 1 g = 3
quarks plasmino (2) dispersion relations g = 0.3 g = 1 g = 3
D. Seipt 2007: 1-loop self-energies with finite m_q HTL 1-loop gauge dependence: Feynman = Coulomb asymptotically asymptotic dispersion relations
Using the EoS RHIC Init.conds. Bernard 0.2 Karsch Bernard 0.1 Aoki Nf = 2 +1
A Family of EoS‘s QPM + lin.interpol. + + fix * sound waves interpolation is better than extrapolation
Hydro for RHIC Using the EoS Family within Kolb-Heinz Hydro Package sensitivity to EoS near Tc (cf. Huovinen)
LHC Predictions smaller v2
Towards CBM @ FAIR: CEP 3 D Ising model
Conclusions 2-loop Γ+ HTL + g G: - good fits of EoS - small contributions of plasmon, plasmino, Landau damp. effective QPM: only T gluons + quarks, simpl. disp. rel. - imaginary mu - high T - susceptibilities - useable EoS for RHIC + LHC elementary excitations in QGP = ? lattice QCD spectral functions, propagators (transport coefficients)