290 likes | 298 Views
This article provides an overview of the ALICE detector and its motivations for studying heavy ion collisions at LHC. It discusses the method and results of measuring the B hadron cross-section via single muons in pp collisions. The text language is English.
E N D
B hadron cross-section via single muons in pp collisions at 14 TeV • Heavy ion collisions @ LHC • ALICE detector overview • Motivations • Method • Results • Summary L. Manceau for the ALICE collaboration (LPC Clermont-Ferrand) manceau@clermont.in2p3.fr
Heavy ion collisions@LHC Central Pb-Pb (Au-Au) σc(LHC)= σc(RHIC) × 10 σb(LHC)= σb(RHIC) × 100 σW(LHC)= σγ(RHIC) × 10 σZ(LHC)= σγ(RHIC) LHC: unprecedented conditions to study QCD matter K. Safarik manceau@clermont.in2p3.fr
HMPID PMD PHOS ALICE@LHC • Designed to measure large multiplicity (8000 charged particles per unit of rapidity at mid-rapidity) • Central barrel (-0.9 ≤ η≤ 0.9): (di-)electrons, photons, hadrons • Muon spectrometer (-4 ≤ η≤ -2.5): (di-)muons • Backward, forward small acceptance detectors: multiplicity, centrality, luminosity manceau@clermont.in2p3.fr
ALICE muon spectrometer - 4 ≤ η ≤ -2.5 • Tracking: • Position resolution < 100 μm (bending plane) • →ΔM < 100 MeV/c² @ 10 GeV/c² • 1.1 M read-out channels • Trigger: • Time resolution < 2 ns • Rate < 1kHz • Decision in < 800 ns • 21000 read-out channels manceau@clermont.in2p3.fr
B hadron cross-section in p-p: motivations • Testing NLO pQCD with heavy flavours Charm Beauty hep-ph/0601164 • Large theoretical uncertainties on cross-sections • Measurement of σ(B) [σ(D)] in p-p is mandatory for understanding: • σ(B) [σ(D)] in p-A: shadowing & anti-shadowing • σ(B) [σ(D)] in A-A: energy loss • Measurement of σ(B) in p-p is mandatory for understanding: • σ(Υ) in p-p, p-A & A-A: production, absorption, suppression, recombination (?) • σ(J/ψ) in p-p (→ p-A & A-A): N(B→J/Ψ)/N(direct J/Ψ) ~ 20% in 4π manceau@clermont.in2p3.fr
B hadron cross-section via single muons: method • Extract N( B) from “data” • Correct for integrated luminosity, detection efficiency, acceptance & decay kinematics • Get differential inclusive B hadron cross-section Eur.Phys.J.C49 :149-154 (2007), ALICE-INT-2006-021 (2006) μ←c: 0. ≤ pt ≤ 3. GeV/c μ←b: 3. ≤ pt ≤20. GeV/c μ←W: 20. ≤pt ≤80. GeV/c manceau@clermont.in2p3.fr
Method widely used and well documented 1. 1.UA1: collisions @ , single muons & dimuons C. Albajar et al., PLB 213 (1988) 405 2.CDF: collisions @ , single electrons F. Abe et al., PRL 71 (1993) 4 3.D0: collisions @ , single muons & dimuons B. Abbott et al., PLB 487 (2000) 264-272 2. 3. ALICE : 4. collisions @ , single electrons F. Antinori et al., ALICE-INT-2006-015 5. collisions @ , single electrons • F. Antinori et al., ALICE-INT-2005-33 6. collisions @ , single muons & dimuons • R. Guernane et al., ALICE-INT-2005-018 4. 5. 6. manceau@clermont.in2p3.fr
Simulation input • Physics Data Chalenge 2006: PDC06 • Full simulation on grid: generation → reconstruction • Detector configuration: MUON+ITS+TOF+T0+V0+FMD+ZDC+PMD+PHOS • 1·107 single muonevents (14000 CPU days, 32 TB with raw data) • Efficiency correction for muon detection in the acceptance • Hypothesis: μ←πΚ is perfectly subtracted • Charm/bottom crossing point ~ 6 GeV/c manceau@clermont.in2p3.fr
Statistics estimates • L=1030 cm-2 s-1 , T=106 s • L=3.1030 cm-2 s-1,T=106 s • L=3.1030 cm-2 s-1 ,T=107 s (Nominal) • Large yield over a broad pt range (even in scenario 1 !) • Beyond 20 GeV/c W ± stick out manceau@clermont.in2p3.fr
Extraction of N(µ←B) Combined fit: (T-B) (fc+R·fb) • T: total number of muons • B: number of muons from B → free parameter • fc (fb) shape distribution of muons from D (B) → from Pythia distributions • R: number of muons from B over number of muons from D → free parameter fixed within 30% (Pythia) Chi2/ddl=0.07 µ←B off by 0.5% µ←D off by 0.3% manceau@clermont.in2p3.fr
Systematic uncertainties Charm Beauty 2. Biased shapes for µ distribution 1. Hadrons hep-ph/0601164 3.Systematic 1. Theoretical predictions for D & B 2. Get μ dN/dpt & Fit μ dN/dpt → biased shapes fc & fb 3. Investigate systematics Chi2/ddl=36 Chi2/ddl=7 µ←B off by 19% µ←B off by 22% • Systematic errors • →17% to 22% on integrated yield • Chi2 → constrain systematics Chi2/ddl=19 Chi2/ddl=13 µ←B off by 17% µ←B off by 17% manceau@clermont.in2p3.fr
→ muons pt 2-3 GeV/c F(μ←B) = 39.83 ptmin = 2.4 GeV/c ptmin Decay kinematics corrections F(μ←B) • F(µ←B): Pythia simulation • 90% of B → μ in the acceptance have a transverse momentum larger than ptmin • ptmin: minimisation of the correction dependence on shape distributions used in Pythia 90% manceau@clermont.in2p3.fr
Inclusive differential B hadron cross-section • Input distribution well reconstructed • Statistical errors negligible • Statistical errors from F(μ←B) from 0.4% to 15% at high ptmin • Systematic errors from F(μ←B) negligible • Systematic errors from fit ~20% • Error from normalisation ~5% (not included) Allow to constrain model manceau@clermont.in2p3.fr
Transverse Plane Inclusive differential B hadron cross-section via single electrons TRD TPC ITS • Strategy: • Electron identification: dE/dx TPC, TRD • Impact parameter cut d0: ITS • cτof B ~ 500µm → displaced vertex for electrons ~100 µm. • (π0 background reduction → loss of statistics) • Different method → different stat. & different syst. → cross-check C. Bombonati et al., PWG3, March 07 ALICE-INT-2006-015 manceau@clermont.in2p3.fr
Summary B hadron cross-section from single muons (and electrons) is a very promising channel: • Measuring B cross-section in p-p is mandatory for a large physics program • The method for measuring B cross-section via single muons is widely used and well documented • This method allows us to extract B cross-section for 2. ≤ ptmin ≤ 20. GeV/c, statistical errors are negligible, systematic errors are about 20% ( impose constrains on model parameters) • D hadron cross-section can be extracted simultaneously (work in progress) • As the method is totally different, measuring B & D cross-sections via single electrons is a good cross-check • Measuring B & D cross-sections should allow to compute new ratios to understand energy loss manceau@clermont.in2p3.fr
Back up manceau@clermont.in2p3.fr
B hadron cross-section in p-p: motivations (II) • New ratio to understand energy loss →mass, color charge • R(D)/h color charge dependence • R(B)/h mass dependence • RB/D isolate mass dep. N. Armesto et al., Phys. Rev. D 71 (2005) 054027 J. Phys. G 35 (2008) 054001 • Measurement of σ(B) in p-p is mandatory for understanding: • σ(Υ) in p-p, p-A & A-A: production, absorption, suppression, recombination (?) • σ(J/ψ) in p-p (→ p-A & A-A): N(B→J/Ψ)/N(direct J/Ψ) ~ 20% in 4π → Informations on the thermodynamical state of QCD medium : Ec, Tc manceau@clermont.in2p3.fr
Understanding E loss with heavy flavours • Traditional ratios: • New ratios: 1 nominal year: 107 central Pb-Pb events, 109 p-p events Statistics: bars, systematics: bands Sensitivity to color charge dependence Sensitivity to mass dependence J. Phys. G 32 (2006) 1295, nucl-ex/0609042 manceau@clermont.in2p3.fr
Electrons in central barrel C. Bombonati et al., PWG3, March 07 ALICE-INT-2006-015 manceau@clermont.in2p3.fr
PDC08 22000 evnts p-p @ 14 TeV manceau@clermont.in2p3.fr
Realistic dN/dpt PDC06 • L=1030 cm-2 s-1, T=7.2 105 s (J.P. Revol@Erice05) • L=1030 cm-2 s-1 , T=106 s • L=3.1030 cm-2 s-1 , T=107 s • (Nominal) • L=3.1030 cm-2 s-1, T=106 s Scaling & Extrapolation • Charm underestimated (factor ~ 2). • 106 single muon events. • 2 GeV/c <pt<10 GeV/c. • NLO calculation: • M.L. Mangano, P. Nason and G. Ridolfi, • Nucl. Phys. B 373 (1992) 295 • 4 statistics scenarii. • 2 GeV/c <pt<20 GeV/c. manceau@clermont.in2p3.fr
Systematic uncertainties (I) D hadron B hadron D hadron B hadron Hera LHC • Pythia is tuned to reproduce « Hera LHC » predictions on D and B hadron production cross-section:hep-ph/0601164 manceau@clermont.in2p3.fr
Systematic uncertainties (II) Beauty Charm Beauty 1 Hadrons 2 Muons 3 Fit • Get μ dN/dpt from D & B • Fit μ dN/dpt • Investigate systematics manceau@clermont.in2p3.fr
Flavor creation Flavor exitation Gluon Splitting Unravel NLO processes manceau@clermont.in2p3.fr
Systematic error on decay kinematics & acceptance correction 90% 60% 20% 90% 60% 20% Systematic error is negligible manceau@clermont.in2p3.fr
μ←πΚ Background (I) PDC06 PDC08 Software trigger pt>0.5 GeV/c at generation on muons: μ←πΚ underestimated Realistic μ←πΚ manceau@clermont.in2p3.fr
Point where πΚ are absorbed za zv z=0 I.P.= vertex Origin Absorber μ←πΚ Background (II) D. Stocco et al. ALICE-INT-2006-27 • Due to I.P. displacement πK cover different distances in different events: • I.P. closer to absorber → - probability to decay before absorption → - µ produced • I.P. further to absorber → + probability to decay before absorption → + µ produced manceau@clermont.in2p3.fr
μ←πΚ Background (II) z=zv-za 1. Correcting each pt slices of d²Nµ/dptdz for vertex smearing. 2. linear dependence: slope → muons from πK decay z=0 extrapolation → muons from b & c 1. 2. 2. 1. manceau@clermont.in2p3.fr
path length L Gluonsstrahlung probability w Q kT l in medium, dead cone implies lower energy loss Heavy Quark Energy Loss C.Salgado (BDMPS) Energy loss depends on: colour coupling factor: 4/3 for q, 3 for g medium transport coefficient “Dead cone” effect for heavy quarks: in vacuum, gluon radiation suppressed at q < mQ/EQ Baier, Dokshitzer, Mueller, Peigne‘, Schiff, NPB 483 (1997) 291. Salgado, Wiedemann, PRD 68(2003) 014008. Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003.